Texas lNSTRUMENTS

99000

TMS99105A and TMS99110A
16-Bit Microprocessors

(@®" MCROPROCESSOR SERIES™

Preliminary Data Manual

ADVANCE INFORMATION

This document contains information on a
new product. Specifications are subject
to change without notice.

NOTICE

Texas Instruments reserves the right to make changes at any time in order to improve
design and to supply the best product possible. Iinformation contained in this publication
is believed to be accurate and reliable. However, responsibility is assumed neither for its
use nor for any infringement of patents or rights of others that may result from its use.

No license is granted by implication or otherwise under any patent or patent right of
Texas Instruments or others.

Copyright © 1982
Texas Instruments Incorporated

Section

TABLE OF CONTENTS

Title
INTRODUCTION
1.1 LT o o1 £
1.2 Key Features it e e e e e e e
ARCHITECTURE
2.1 MemoryAllocationcvunn. e e e e e e e e et e
2.2 Block Diagramand Flowchart ittt e
2.3 Arithmetic Logic Unit. e e e e
2.4 Internal Registers ittt e e e e
2.4.1 Program Countert e e e e
2.4.2 StatusS Register.ottt i i e e e e e e
243 WOTKSPAaCE . . . ot e e e e e e
2.4.4 ContextSwitching ittt i,
245 Accessof PC, ST, andWP e
2.5 MacrOStOre e e e e e e e
MEMORY INTERFACE
3.1 Definition e e e e
3.2 Memory Interface e e
3.2.1 Memory Write Operations.ttt i e e s e s
3.2.2 Memory Read Operationsttt in ittt ittt et e
3.2.3 Extended Memory Addressingttt e
3.24 Direct Memory ACCeSSottt ittt i e e e e
3.2.5 Memory WaitState Generationttt inneenennn
3.3 Processor InternalCyclelIndication it e .
3.4 Applicable Bus Status Codes it e e e e e
3.4.1 Memory ReadCycleCodes ittt ittt et
3.4.2 Memory WriteCycleCodes. ittt ettt eeennn
3.4.3 Hold AcknowledgeCode — HOLDA
3.4.4 Multiprocessor Interlock Code — MPILCK
3.45 MaCrOStOrE ACCESSES . . . o it ittt it it it e e e
INTERRUPT STRUCTURE
4.1 TMSO8000 INterrupt StIUCTUIE ot i it i it i it ettt et e ittt e a st
4.2 InterruptLevel O and Resetottt ittt it e e e e e
4.3 Non-Maskable Interrupt (NMI) L e e e e
4.4 Interruptlevel 2 o e e e e e e e e e
4.4.1 ArithmeticFaultInterrupt i e e e
4.4.2 Macroinstruction Detection (MID} Trap o it it ittt i it it e e e
443 lilegal Instruction (ILLOP) Interrupto ot ittt it it it e ceeeneenn
4.4.4 Privileged Opcode ViolationInterrupt i i,
4.4.5 Applicable Bus Status Codest ottt i e e e e
TMS99000 INPUT/QUTPUT INTERFACE
5.1 DesCrIDtION . . . e e e e e e e
5.2 Single-Bit 1/0 Operationsttt ittt e e e e e e
5.3 Multiple-Bit Serial /O Operationsottt ittt e i e e e
5.4 Parallel HO Operationsttt i e e e e e
5.5 ApplicableBus Status Codes e e
5.6 External InStruCtions it i e e e e e e,
PRIVILEGEDMODE e e e e e e e e e e

10.

MACROSTORE INTERFACE AND OPERATION

7.1 DS CIIPHION . . . i e e e e e e e 38
7.2 TheMacrostore Interface ittt i e e 38
7.2.1 TN . o v o e e e s 38
7.2.2 Wit StateS vttt ittt et e e e 38
7.2.3 Organization e 38
7.2.4 Modesof Operation. i e e 39
7.3 Macrostore Capabilities e e 40
7.3.1 EntryProcedure e e e s 40
7.3.2 EXit ProcedUre i ittt e e e e e e 42
7.3.3 Macrostore EXecutionttt e s 42
7.3.4 SubroutineBranchandReturn i 47
7.3.5 MID OpcodesininterruptRoutines ittt e 47
7.3.6 Testing ForExternalMacrostore i iiiiinnnnnennns s 47
ATTACHED PROCESSORINTERFACE i e e e 47
PINDESCRIPTION i e et e e e e e 52
INSTRUCTION SET
10.1 DefinitiON . . .o i e e e e 56
10.2 AddressingModesttt e e et e 56
10.2.1 Workspace Register Addressing, R., 56
10.2.2 Workspace Register Indirect Addressing, *R 56
10.2.3 Workspace Register Indirect Autoincrement Addressing, *R+ 56
10.2.4 Symbolic (Direct) Addressing, @LABEL 57
10.2.5 Indexed Addressing, @TABLE(R) i 57
10.2.6 Immediate Addressing it e e 57
10.2.7 Program Counter Relative Addressing 57
10.2.8 I/ORelative Addressing it innanennnn 58
10.3 TermsandDefinitions e e e i e 58
10.4 Status RegisterManipulation e 59
105 INStIUCHIONS oottt ittt it it e e e et 64
10.5.1 Dual Operand With Muiltiple Addressing Modes for Source and Destination 65
10.5.2 Dual Operand With Multiple Addressing Modes for SourceOperand 65
10.5.3 Signed Multiply and Divide Instructions L 66
10.5.4 Extended Operation (XOP) Instructiont 67
10.5.5 SingleOperandinstructionsttt 68
10.5.6 BINDINSIIUCHION vt ittt ittt ettt e et e e e i s 68
10.5.7 MultipleBit I/OInstructions ottt e e e 68
10.5.8 Single-Bit /OInstructions e 69
10.5.9 JumplInstructionsttt e e 70
10.5.10 ShiftInStructions ottt t ittt e it e e 70
10.5.11 Immediate RegisterInstructions. i 71
10.5.12 Internal Register Load Immediate Instructions. 71
10.5.13 Internal Register Load and Storelnstructions 71
10.5.14 Return Workspace Pointer (RTWP) Instruction 72
10.5.15 External INStructionsttt it ittt it e e e 72
10.5.16 BitManipulation INSTIUCHONS -« « « « o ot e e et e e 73
10.5.17 Double Precision Arithmetic INSTrUCHIONS - « - <« « o v ot v vt v e n e e e 73
10.5.18 MIDOPCOAESottt e ettt i e e e e s 74
10.6 INStruCtioN EXeCULION i ittt e e 74
10.6.1 Microinstruction Cycleottt e e 74
10.6.2 OpcodePrefetching.ttt i i e e 74
10.6.3 TMS99000 instruction Execution Times. e e e e 75
10.6.4 BusStatusCodeSequencettt e 78

11. TMS99105A/TMS991 10A PRELIMINARY ELECTRICAL SPECIFICATIONS

11.1 Absolute MaximumRatings0i it 93

11.2 Recommended OperatingConditions e e e et e 93

11.3 ElectricalCharacteristicsc...u... e e e e e e 93

11.4 Clock CharacteristiCso .ttt i it e e e 93

11.4.1 Internal Oscillator 93

11.4.2 External ClocKo e e 94

1.6 TimingRequirements0.ciiinunnunn.. e e e e 95

11.6 SwitchingCharacteristics. 0. ... 98

12. TMS29000 MECHANICAL SPECIFATIONS

12.1 TMS99105A/TMS99110A — 40-PinCeramicPackage.o v v v 101

12.2 TMS99105A/TMS99110A — 40-PinPlasticPackageovv ... 101
APPENDIX A TMSO99T105A SUPDIEMENtttt e et e et et e e e it e et e e 103
APPENDIXB TMS99110ASupplement cie ettt i e e 105

LIST OF TABLES

Table No. Title Page
i Dedicated Workspace Register 12

2 BusStatus Codes. 15

3 Interrupt Level Data 24

4 Error Interrupt Status Bit Assignments, 28

5 External Instruction Codes i e e, 37

6 Macrostore OperatingModesttt e, 39

7 Macrostore Entry Vectorst 41

8 Instructions with Two-word Opcodes it i e e e e 42

9 Dedicated MRAM Register Functions (WPbits 11to 15 arealizero) 43
10 Bus Status Codes Associated with WP Value (WP bits 11 to 15 notequaltozero) 44
11 Evaluate Address INSTIUCHIONottt i it e e e 45
12 JumponPendingInterrupt L. e 46
13 Pin DesCription . . . L e 53
14 SYymboI CoNVeNtioNS i ot 58
15 Status Register Bit Definitionst 59
16 Instruction Execution TIMesottt e e 76
17 Example Instruction Sequence foran A*RT1+, R2ttt 78
18 Source AddressingMode SEqUENCESttt 79
19 INStruction EXeCUtION SEQUENCESt ottt ittt e e e e e e 80
20 Interrupt and Macrostore Trap SequUEeNCES. « . . o o ot i e e e e e 91
21 Attached Processor I/F SeqUences oottt 92

Figure No.

NRONRNDNNNRNONRNNDNDRNONN = = e o o o o
DR ANNEONAODDANPNDON2OPRIDA RN =

(]
[«

31
32
33
34
35
36
37
38
39
40

LIST OF FIGURES

Title Page
Wordand Byte FOrmMats oottt e s 2
Map of Main Memory Address Space vt e 3
Block Diagram of TMSO8000ottt it s 4
TMSGO000 FIOWCRAIt . . o o v ot it it et e et e e e e e e e 5
Status Register Field Assignmentst e 11
Workspace RegisterUsage u ittt i e e 11
Workspace Pointerand Registersottt e 12
Macrostore Memory Address SPaceot e 14
MemoryiInterfacettt e e e 16
Memory Write Cycle Operationottt t e e 16
Memory Read Cycle Operation 17
Functional SegmentationLogiC. s 18
TMS99000 Extended Addressing.o ot i ittt et e 18
TMS99105A or TMS99110A to TIM99610 Memory Mapperinterface 19
Memory Cycle — DMAHOLD Operation.ottt e e e iaan e 20
Wait-State Generation ForMemoryBusCycles i 21
Multiprocessor Interlock Timing — ABS, TSMB, TCMBlinstructions 23
INEEITUPE SEQUBNCE . - . . o . o e ottt ottt ittt e e e 25
RESEt SOBQUEMCE o v v v o v et e e e e e e e e e e 26
LY IR TR o 27
VO AAAress Map ittt e e e e e e 31
TMSO9000 /O INtErface v oot ittt ittt e e e e e e 32
TMS99000 1/O Timing — Input Operation ittt i 32
TMS99000 1/0 Timing ~ Output Operation ot 33
WaitState Generationfor l/OCycles i e 34
Single-Bit /O Address Development i s 35
LDCR/STCR DAta Transfers oot ittt ittt et e et e e e e 36
Address Map of Macrostore vttt e e e 39
Attached Processor (AP} Interface i e e 48
AP Interface Timing
(A) Transferring Control to APo i 49
(B)Regaining Control from AP 50
PinASSIGNMENTSottt sttt e e e e e 52
Overlapped Instruction EXeCUtion it 75
INternal OSCillator ittt i e e e e e e e e 94
External OSCillator vt e e e 94
Switching Times Load CirCUit oottt e 96
Clock Timing Parametersottt it ettt 96
Memory and Internal Cycle TimingParameters v 97
VOCycle TimingParametersttt 98
Interrupt, fiold and APP Timing Parameters. i e 99
Hold Cycle TIming Parameters« .vuvntnt ettt ettt e e 99

vi

LIST OF ACRONYMS, COMMANDS AND CODES

REFERENCE DEFINITION
ABS Absolute value
A/D (bus) Address data bus
ALATCH Address latch
AP Attached processor
APP Attached processor present
AUMS Arithmetic logic unit, Macrostore access MPILCK inactive
AUMSL Arithmetic logic unit, Macrostore access MPILCK asserted
BLWP Branch and ioad workspace pointer
BST Bus status code
CLKOUT Clock output signal
CRU Communications register unit
DMA Direct memory access
DOP (bus code} Destination operand transfer
EIST Error interrupt status
EVAD Evaluate address instruction
GM (bus code) General memory transfer
HOLD) Self-explanatory
HOLDA (bus code) Hold acknowledge
IAQ (bus code) Instruction acquisition
ILLOP lllegal operation
INTA (bus code) Interrupt acknowledge
INTREQ Interrupt request
10 (bus code) /O transfer
10P (bus code} immediate data, symbolic address
LDCR Load CRU, output instruction
LDD Long distance destination
LDS Long distance source
LST Load status
LSW Least-significant word
MEM Memory cycle
MID{bus code) Macroinstruction detected
MPILCK Multiprocessor interlock
MSW Most-significant word
NMI Non-maskable interrupt
PC Program counter
PSEL Memory page select
RD Read enable
RESET (bus code) Reset. RESET input is pulled low
RTWP Return from subroutine or interrupt
R/W Read/Write
SBO Set bit to one
SBZ Set bit to zero
SOP (bus code) Source operand transfer, MPILCK inactive
SOPL (bus code} Source operand transfer, MPILCK asserted
ST (bus code) Status register update
STCR Store CRU input instruction
TB Test bit
TCMB . Test-and-clear memory bit
TSMB Test-and-set memory bit
WS Workspace
WE/IOCLK Write enable and inverted 1/O clock
WP Workspace pointer
XOP Extended operation

1.1

1.2

INTRODUCTION

DESCRIPTION

The TMS99000 series is a third generation family of single-chip 16-bit micrroprocessors and advanced
peripherals, using N-channel silicon-gate SMOS technology. The TMS99000 family of processors offers un-
precedented speed and a powerful instruction set that is an opcode-compatible enrichment of the TMS9900 and
TMS9995 instruction set. These processors build on the unique memory-to-memory architecture that was

pioneered at Texas Instruments and feature multiple register files, resident in memory, to permit faster response to
interrupts and increased programming flexibility.

The TMS99000 family includes two microprocessors, the TMS99105A and the TMS99110A, which are iden-
tical except for specialized programmations of the on-chip Macrostore memory. The ROM macrostore in the
TMS99110A microprocessor contains floating point instructions as part of the machine language instruction set.
The TMS99105A microprocessor contains RAM macrostore while the TMS99110A contains both RAM and
ROM macrostore.

Texas Instruments manufactures a complete set of MOS and TTL integrated circuits to provide memory and logic
functions for the TMS99000 system. The system is fully supported by software and a complete prototyping
system.

All references in this document, unless explicitly indicated, refer to all members of the TMS99000 family of
microprocessors.

KEY FEATURES

® 16-bit instruction word

[] Memory-to-memory architecture

[] Instantaneous access to 256K bytes of memory
[]

84-instruction superset of TMS9900 instruction set

~ SIGNED multiply and divide

— Long-word (32-bit) shift, add, subtract

- Load status register, load workspace pointer

— Stack support — branch and push link, branch indirect

— Multiprocessor support — test, test and clear, test and set

Privileged mode

Macrostore* emulation of user-defined instructions
Status signals to identify processor activity
Interrupt acknowledge signal

Arithmetic fault interrupt

lllegal instruction interrupt

16 prioritized hardware interrupts

16 software interrupts (XOPS)

Programmed /O

DMA compatible

Bit- , byte- and word-addressable 1/0
Multiprocessor system interlock signal (hardware support for indivisible operations on semaphores)
Attached processor interface

N-channel silicon-gate SMOS technology

167 nsec machine cycle time

On-chip clock generator and oscillator

R ———
*Macrostore is a trademark of Texas Ir Incorporated

2.1

[] 40-pin package
® Single + 5 volit supply

ARCHITECTURE

MEMORY ALLOCATION

The memory word of the processor is 16 bits long as shown in Figure 1. Words are assigned even-numbered ad-
dresses in memory. The contents of each memory word can also be treated as two bytes of eight bits each. The in-
struction set supports both word and byte operations. A 16-bit address is explicitly manipulated by all memory ad-
dressing modes, but only the 15-bit word address is provided to the memory system. This allows direct addressing
of 64K bytes of memory space, referred to as the logical address space. The instantaneous address reach of the
processor may be increased to 256K bytes using the techniques described in Section 3.2.3.

MSB LSB
[of1J2]3la]s]e]7]|8]s]10]11]12]13]14]15
SIGN
BIT
AN S/
N
MEMORY WORD (EVEN ADDRESS)
MSB LSB
[oT1Jz2]3Tals5]el7]8]9]10]11]12]13]14]15]
SIGN
BIT
N\ 7\ /
NV AV
EVEN BYTE 0DD BYTE

FIGURE 1 — WORD AND BYTE FORMATS

Byte instructions may access either byte as necessary. Byte instructions involving workspace register data
operate on the most-significant byte (even address in Figure 1) of the workspace register, and leave the least-
significant byte (odd address) unchanged. The two bytes in a register can be swapped using the SWPB instruc-
tion. Additionally, since the workspace resides in memory, the least-significant byte of a register may be address-
ed, if desired, using any of the general memory addressing modes.

The processor memory map (Figure 2) shows the locations in the memory address space for the interrupt and XOP
trap vectors, and the non-maskable interrupt (NMI). All remaining memory space is available for programs, data,
and workspaces.

MEMORY

AREA DEFINITION ADDRESS MEMORY CONTENTS
d 0000 WP LEVEL 0 INTERRUPT
0002 PC LEVEL O INTERRUPT
0004 WP LEVEL 1 INTERRUPT
0006 PC LEVEL 1 INTERRUPT
INTERRUPT VECTORS <
oo p

003C WP LEVEL 15 INTERRUPT
> 003E PC LEVEL 15 INTERRUPT

0040 WP XOP 0
0042 PC XOP O
XOP SOFTWARE
TRAP VECTORS ”n~ T
007C WP XOP 15
007E PC XOP 15
0080 GENERAL MEMORY AREA
‘PROGRAM. DATA, AND MAYBEANY
WORKSPACE REGISTERS PROGRAM SPACE
EFFA OR WORKSPACE
FFFC WP NMI FUNCTION
NMI SIGNAL VECTOR FFFE PC NMI FUNCTION

FIGURE 2 — MAP OF MAIN MEMORY ADDRESS SPACE

2.2 TMS99000 BLOCK DIAGRAM AND FLOW CHART

The block diagram of the processor is shown in Figure 3. A flowchart, representative of the processor functional
operation, is shown in Figure 4.

) Jo— XxTAL1
WAIT-STATE LOGIC MEMORY CONTROL
- le— XTAL2
CLOCKS
o CLKO
INTERRUPT CLkout
AND —»1 INT
INT REQUEST LOGIC MICROCONTROLLER
+ l—-——’ {
Pam——— 3
— MICRO IR - &
=
l—» JUMP - g
- o
ST REG >
4 -4
[) =]
L =
"}
CONSTANT ST r-lg =
]
- 3§ <
ALU SHIFT
> LOGIC COUNT
-
w
o MQ REG
rg ALU 3
= [} »
Q N o
2|33 olal 2| © 5 M
o
R e shirr Teee ANHEE 2
ajuw] O o
R s
we o—
- PC
[72]
]
D REG a
o
ey
MA REG
) 2 ™
] 5
K REG &
L Q
et b g
- BYTE SWAPPER
f SBUS
P BUS

ADDRESS/DATA 1/0

FIGURE 3 — BLOCK DIAGRAM OF TMS99000

YES
NO VECTOR @0000(16} 1
MASK«@—0000 —> READ NEW WP
AND PC
NI ‘
REQUEST YES VECTOR @FFFC(16) >
2 MASK«@-0000 SAVE OLD WP
IN WR13
lﬁ%ﬁ YES VECTOR @0008(16)
MASK«@—0001
REQUEST SAVE OLD PC
IN WR14
EXTERNAL YES VECTOR @0000(16)
LEVEL O MASKeg-0000 |
REQUEST - SAVE OLD ST
IN WR15
NO
VECTOR @4 (ICO-3)
EXTERNAL INTERRUPT AT /CLEAR ST7-11
LEVELS 1-16 cTv AND LOAD NEW
INTERRUPT
MASK INTO
ST12-ST15
4
CLEAR ST REGISTER
CLEAR EIST FLAGS
iLLOP
TRAP JUST
YES NO TAKEN ?

FIGURE 4 — TMS99000 FLOWCHART

° y

FETCH NEXT INSTRUCTION FETCH NEXT INSTRUCTION
PCe-PC+2 USING NEW PC
1 PCa—PC+2
COMPLETE EXECUTION
OF CURRENT INSTR.
(WRITE RESULTS)

!

INTERRUPT SET FAULT ARITHMETIC
MASK < 2 FLAG EIST4 FAULT
? {ST4 AND ST10)?

YES ACTIVE

I PCa—pPC-2

INTERRUPT
REQUEST ?

INTERRUPT
MASK < 2
?

PRIVILEGED
OPCODE
VIOLATION ?

SET FAULT
FLAG EIST14

_MID OPCODE OR
APP TRUE DURING
INSTR. FETCH ?

FIGURE 4 — TMS99000 FLOWCHART (CONT’'D)

START EXECUTION OF NEW
INSTRUCTION. UPDATE PC
iF JUMP. FETCH OPERANDS

EXITING MACROSTORE
WITHOUT CHECKING
INTERRUPTS ?

EXITING

YES MACROSTORE

NO

|

LOCK IN ACTIVE
INTERRUPT REQUEST

ENABLED
BY INTERRUPT
MASK ?

WITH
RLOP ?

XOP, BLWP
OR X INSTRU.
?

NMI, EXTERNAL OR
INTERNAL INTERRUPT
REQUEST ?

YES

IDLE
INSTRUCTION
?

FIGURE 4 — TMS99000 FLOWCHART (CON'D)

PC@—PC~2

VECTOR @0008(186)
READ NEW WP
WR13 OLD WP
WR14 OLDPC
WR16 OLD ST

WP WR13
PC WR14
ST WR15

FETCH NEXT INSTR
PC PC+2

LOCK IN ACTIVE
INTERRUPT
REQUEST ICO-3

L

FIGURE 4 —~ TMS99000 FLOWCHART (CONT'D)

IS 2ND WORD
OF 32-BIT OPCODE
ILLEGAL ?

YES

PCa—PC-2

MACROSTORE

DISABLED
?
ENTER
MACROSTORE
RECOGNIZE USE
OPCODE AT —
? >382
EMULATE SET ;"sg':;""‘“
OPCODE
CHECK FOR YES USE
INTERRUPTS RTWP L
>380
USE
RTWP >
>384
EXIT
MACROSTORE

FIGURE 4 — TMS99000 FLOWCHART (CONCLUDED)

2.3

2.4

2.4.1

2.4.2

2.4.3

ARITHMETIC LOGIC UNIT

The arithmetic: logic unit (ALU) performs all arithmetic and logical operations required during instruction execution.
These operations include addition, subtraction, AND, OR, exclusive-OR and complement. A separate comparison
circuit within the chip performs the logical and arithmetic comparisions needed to control bits O, 1 and 2 (Figure 5)
of the status register. Byte operations are performed in the most-significant half of the ALU. The least-significant
half of the result in byte operations is left unchanged. This conveniently permits the status circuitry used for word
operations to be used for byte operations as well.

INTERNAL REGISTERS

The following three internal registers are accessible to the programmer:

® Program Counter (PC)
® Status Register (ST)

® Workspace Pointer (WP)

Other internal registers that perform instruction acquisition and execution are inaccessible to the programmer.

Program Counter

The program counter (PC) is a 15-bit hardware register that contains the memory address (or external Macrostore
address; see Section 7) of the instruction word following the currently executing instruction.

Conceptually, the PC is a 16-bit register that functions as a count-by-two counter with the least-significant bit
(LSB) hardwired to 0. Since instructions are constrained to word boundaries, the processor reads the instruction
word from the location pointed to by the PC, and increments the contents of the PC by two in preparation for the
next instruction fetch. A program branch is performed by replacing the contents of the PC with the address of an
instruction word located in memory or Macrostore. All jump, branch and context-switching instructions alter the
PC in this manner.

Status Register

The status register (ST) is a fully-implemented 16-bit internal register whose contents signify the resuits of
arithmetic and logical comparisons, indicate program status conditions, and supply the arithmetic fault interrupt
enable and the interrupt mask to the interrupt priority circuits. Each bit position in the register represents a par-
ticular processor function or condition. Figure 5 illustrates the bit position assignments. Certain instructions, when
executed, use the status register to check for a prerequisite condition; others affect the values of the bits in the
register; still others load the entire status register with a new value. This last case occurs when an LST, RTWP or
XQOP instruction is executed. Other conditions causing a new status to be loaded are (1) an interrupt, and (2) return
of system control from an attached processor (Section 8) to the host system. After the new status has been load-
ed, an ST bus status code is output along with bits 7 to 11 of the updated status register.

The effect of each individual instruction on the contents of the status register is described in Section 10.5. The in-
dividual status register bits are identified in Section 10.4 along with the conditions affecting each bit.

Workspace

A workspace is a block of 16 contiguous words in memory that contains frequently-accessed data and addresses.
The location of the workspace is defined by the workspace pointer register, internal to the processor, which con-
tains the address of the first word in the workspace.

Each word in the workspace is treated as an individual 16-bit general-purpose register. Workspace registers (WRs)
contain data and addresses, and function as operand registers, accumulators, address registers and index
registers. During interrupts and certain instructions, however, particular WRs are assigned the special roles
described in Table 1. As indicated in the workspace map in Figure 6, all 16 WRs manipulate data and addresses,
.but only WRs 1 through 15 can be used as index registers.

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L>]JA>]|EQ}] C | AF | OP | XOP]PRV]| M AFIE] EM INTERRUPT MASK

STO | sT1| ST2| ST3|ST4|ST5 | ST6 | ST7| ST8 ST9J$T10|ST11 snzls1'13|s1'14|51—1j

——— (XOP} EMULATE ENABLE

UNDEF

ARITHMETIC FAULT
INTERRUPT ENABLE

MAP SELECT

PRIVILEGED MODE

XOP IN PROGRESS

PARITY {(ODD NO. OF BITS)

ARITHMETIC FAULT

CARRY OUT

EQUAL/TB INDICATOR

ARITHMETIC GREATER THAN

LOGICAL GREATER THAN
FIGURE 5 — STATUS REGISTER FIELD ASSIGNMENTS

REGISTER

o

DATA OR
ADDRESSES

INDEX
CAPABILITY

olojvN]|]ojla|,]lwWIN]=

- -
- O

-
N

-
w

-
£)

15 4 A

FIGURE 6 — WORKSPACE REGISTER USAGE

1

TABLE 1 — DEDICATED WORKSPACE REGISTERS

REGISTER
NUMBER CONTENTS USED DURING
0 Shift count (optional) Shift instructions (SLA, SRA, SRC, and SRL)
Multiplicand and MSW of result Signed multiply
MSW of dividend and quotient Signed divide
MSW of floating point accumulator Floating point operations
1 LSW of resuit Signed multiply
LSW of dividend and remainder Signed divide
1 Return address Branch and link instruction (BL)
Effective address Extended operation (XOP)

12 CRU base address CRU instructions (SBO, SBZ, TB, LDCR, and
STCR)

13 Saved WP register Context switching (BLWP, RTWP, XOP,
recognized interrupt, NMI, and RESET), ex-
ternal process

14 Saved PC register Context switching (BLWP, RTWP, XOP
recognized interrupt, NMI, and RESET), ex-
ternal process

15 Saved ST register Context switching (BLWP, RTWP, XOP,

recognized interrupt, NMI, and RESET), ex-
ternal process

WORKSPACE POINTER REGISTER

THE MICROPROCESSOR ADDS THE CON-
TENTS OF THE WP TO TWO TIMES THE
WORKSPACE REGISTER NUMBER TO DERIVE
THE ADDRESS IN MEMORY OF THE REGISTER.
WORKSPACE REGISTERS ARE ALWAYS
LOCATED AT EVEN ADDRESSES SINCE THEY
FALL ON WORD BOUNDARIES.

WORKSPACE
ADDRESS REGISTER
IN MEMORY NUMBER

{WP)+00 «— WRO
(WP) +02 «—— WR1
(WP)+04 «—» WR2
(WP)+06 «—» WR3
(WP} +08 «—» WR4
(WP)+0A «— WR5
(WP)+0C «—» WR6
(WP)+ OE «——» WR7
{(WP)+10 «——» WRS
{(WP)+12 «—> WRS
{(WP)+14 «— WR10
(WP)+16 — WR11
(WP)+18 «—» WR12
{(WP)+ 1A «—» WR13
(WP)+1C «—= WR14
(WP)+1E «——> WR15

FIGURE 7 - WORKSPACE POINTER AND REGISTERS

12

244

2.45

2.5

The location of the workspace in memory is defined by a hardware register, internal to the processor, called the
workspace pointer (WP). The WP contains the address of the first workspace register (WRO). Conceptually, the
WP is a 16-bit register with the LSB hardwired to 0. As indicated in Figure 7, the memory address of WRn,
n=0,1,...,15, is calculated as (WP} +2n.*

Context Switching

The processor’s memory-resident workspace is a particularly valuable feature in applications that require frequent
context switches. A context switch is a change from one program execution environment to another such as
takes place during a subroutine call or an interrupt. Since the workspace registers already reside in memory, the
processor performs a context switch simpiy by saving its three internal registers, the WP, PC and ST, in memory
and fetching the new WP and PC from memory.

The processor realizes a similar time savings in returning from an interrupt or subroutine. The original context is
restored by simply replacing the contents of the WP, PC and ST with the values saved in memory.

The instructions that result in a context switch include BLWP {branch and load workspace pointer),.RTWP {return
from subroutine or interrupt) and XOP (extended operation). A device interrupt, arithmetic fault interrupt, privileg-
ed opcode violation, illegal instruction error, a RESET or an NMI (non-maskable interrupt) also causes a context
switch by forcing the processor to trap to a service routine.

Access of PC, ST. and WP

System control can be transferred from the processor to an external device such as an attached processor or
maintenance panel. During the transfer of control, the processor writes the contents of its WP, PC and ST to
memory where they can be accessed and modified by the external device. Upon return of control to the processor,
the WP, PC and ST are updated with the modified values from memory. The details are presented in Section 8.

MACROSTORE

The TMS99000 addresses a 64K byte memory address space, which is logically distinct from the main memory
address space. This memory space, which is called Macrostore, is logically differentiated from the main memory
space through a bus status code output by the processor.

The TMS99000 has reserved the first 4K byte addresses for on-chip Macrostore memory. Of this 4K byte space,
there are 1K bytes of ROM and 32 bytes of RAM implemented on the initial versions of the TMS99000. The
TMS99105 does not utilize its on-chip ROM; however it does provide the 32 bytes of RAM eliminating the exter-
nal RAM requirement in many cases where external Macrostore memory is provided. Other versions of the
TMS99000 family provide preprogrammed functions in the on-chip Macrostore ROM (e.g. TMS99110 floating
point). All members of the TMS99000 family can address external Macrostore memory for prototyping and ap-
plications requiring more than the 1K bytes of on-chip ROM.

Macrostore memory space implements added functions or instructions through emulation routines written in stan-
dard machine code. The Macrostore address space is entered through the attempted execution of a subset of the
unused opcodes called macroinstructions. When attempted execution of the macroinstruction takes place, the
processor traps to a specified location within the Macrostore. It is the Macrostore-resident software’s responsibili-
ty to decode and perform the emulation of the function or instruction. A Macrostore memory map is shown in
Figure 8. Section 7 describes the interface and use of the Macrostore memory space.

*Enclosing WP in parenthesis means that the contents of WP are being referred to.

13

3.1

AREA DEFINITION MEMORY MEMORY CONTENTS

ADDRESS
/7 >0000
32 BYTES ON-CHIP RAM
>001E
>0020 //

FUTURE EXPANSION /

>07FE /S //
>0800

ENTRY TABLE
INTERNAL MACROSTORE

ADDRESSES (ALL BUT < 0812 |

RAM MAY BE MAPPED >0814
EXTERNALLY)
1K BYTES ON-CHIP ROM

>O0BDE

W
S o W)

>1000

EXTERNAL MACROSTORE

ADDRESS < A~ USER’S ROM AND RAM w~

N >FFFE

FIGURE 8 — MACROSTORE MEMORY ADDRESS SPACE

TMS99000 MEMORY INTERFACE

DEFINITION

The processor pin functions are described in Section 9. Several of the pins have dual or multiple functions deter-
mined by the state of the ALATCH, MEM, and bus status code (BST1-BST3) outputs. Processor operations involv-
ing the transfer of data utilize the time-multiplexed address and data lines. These lines, along with the correspon-
ding control signals, comprise the local bus interface of the processor. The local bus interface is used to perform
memory, DMA, input/output, external Macrostore, and attached processor operations.

The term, bus cycle, describes the sequence of handshake operations necessary to complete the transfer of one
datum over the local bus. The beginning of each bus cycle is marked by a positive ALATCH pulse, during which an
address is output on the bus, and MEM and the bus status code become valid. Each particular type of bus cycle is
mdlcated by its own umque bus status code (Table 2). A read or write operation is indicated early in the cycle by
the RIW output. The RIW output acts as an early predlctor of whether the AD buffers will tnstate when in the data
bus mode (after the falling edge of ALATCH). The RIW output is different from traditional RIW indicators in that
the R/W output provides direction indication for both memory and non-memory cycles. During memory write
operations, R/W remains at a low level throughout the memory cycle, During memory read operations, R/W re-
mains at a high level throughout the memory cycle. The RIW output may be used to enable the direction on various
databus buffers. The R/W output also provides an early indication of the RD output such that when R/Wls high at
the beginning of the cycle, RD will be taken low by the processor after ALATCH goes low. If R/W is low at the
beginning of the cycle, the RD output will remain high after ALATCH goes lovy. Following the falling edge of the
ALATCH pulse, the bus is used either to perform a write operation or is forC/é to the high-impedance state for a
read operation. The bus status, R/W, and MEM outputs remain stable throvlghout the duration of the bus cycle,
and either the WE/IOCLK or RD output may be pulsed low to perform a wnte or read operation.

14

TABLE 2 —BUS STATUS CODES

BST
MEM- | 1 2 3 | NAME DESCRIPTION OF BUS ACTIVITY
L L L L |SOPL Source operand transfer with MPILCK asserted.
L L L HISOP Source operand transfer. MPILCK is inactive.
L L HLIJIOP Immediate data or second word of two-word instruction, or symbolic address.
L L H H[IAQ* Iinstruction acquisition. First word of instruction is fetched from memory.
L H L L |DOP Destination operand transfer.
H L H |INTA Interrupt acknowledge. Active during the WP and PC fetch for an interrupt or XOP.
L HHL|WS Workspace transfer (or multi-word transfer beginning with WR15, and Ts=0).
L HHH|GM General memory transfer.
H L L L JAUMSL | Internal arithmetic-logical unit opération or macrostore access with MPILCK asserted.
H L L H}AUMS internal arithmetic-logical unit operation or macrostore access. MPILCK is inactive.
H L H L |RESET Reset. The RESET input is pulied low.
H L HH]JIO 1/0 transfer
H HLL|WP Workspace pointer update due to BLWP, RTWP, LWP, XOP, APP entry, APP exit or interrupt. The
new workspace pointer is on the address bus.
H H L H|[ST Status register update due to LST, RTWP, XOP, APP exit or interrupt. Bits 7-11 of the new status
are on the address bus. This occurs prior to the fetch of the next instruction.
H HH L |MD Macroinstruction detected. APP is sampled when READY is high.
H H H H [HOLDA | Hold acknowledge.

*Due to opcode prefetch, IAQ for the next instruction may be output before the resuit of the current instruction is stored.

During bus cycles dedicated to internal functions, the RD and WE/IOCLK outputs remain high and R/W goes low:
no transfer of data takes place, although a bus status code is output. During these operations, the activity of the
ALATCH and address-data lines is as described in the previous paragraph.

For convenience, reference will occasionally be made to the ‘‘address bus’’ and ‘’data bus’’ as if they were
separate lines. The reader should remember that address and data are, in fact, multiplexed over the same physical
lines.

The basic time unit of the local bus interface is the machine state, which has a duration of one CLKOUT period. A
bus cycle minimally requires one machine state to complete but may be extended by some integral number of ad-
ditional machine states.

Bus cycles can be extended by the READY input signal. READY is manipulated by external logic to permit the pro-
cessor to work with slow memory or I/O devices. The additional machine states generated by the READY signal
are called wait states. It should be noted that wait states may be generated even during internal ALU cycles as in-
dicated by the bus status codes.

Three types of bus cycle are distinguished: memory, I/O) and internal. During a memory or I/O cycle, a 1 data transfer
takes place on the local bus accompanied by either the WE/IOCLK output signal. During all cycles R/W also is out-
put to give an early indication of read/write at the start of the cycle and continues to be active until the end of the
bus cycle. Either RD or WE/IOCLK is active during an internal cycle involving an access of external macrostore.
During internal machine cycles, which are not Macrostore cycles {(as defined by the bus status codes AUMSL and
AUMS), the RD and WE/IOCLK outputs remain inactive high. Memory and non-i/0 cycles have a minimum duration
of one machine state, and a I/O cycie has a minimum duration of two machine states. A memory, 1/O or internal cy-

15

cle can be extended by an arbitrary number of wait states by pulling the READY input low. Note that because in-
ternal cycles can be wait-stated, care must be exercised in the design of external READY control logic to avoid

P PP S TN | P . PP, RA_ PPN PN

wait-stating internal cycles that are not Maciostore cycles.

3.2 MEMORY INTERFACE

The signals used in the interface to system memory are shown in Figure 9.

MEM

RIW

< ADDRESS/DATA {0-15) >

ALATCH

WE/IOCLK

TMS99000 RD MEMORY
cPu READY SYSTEM

HOLD

BST(1-3) JI>

FIGURE 9 — MEMORY INTERFACE

3.2.1 Memory Write Operations

The timing for a memory write cycle is shown in Figure 10. At the beginning of the cycle, the processor asserts
ALATCH, outputs the address and PSEL on the address-data lines, and pulls MEM low. Concurrent with MEM go-
ing low, R/W goes low to give an early indication of a memory write cycle. The CPU then pulls ALATCH low, out-
puts the data word on the address-data lines, and asserts WE/IOCLK. The cycle may be extended by wait states
using the READY signal, as described in Section 3.2.5.

3) (3 3)

| |
cLKOUT /S \ /'—L /. \ /S
I]
|]
apeus _ Y W Y@ Y X 2 X X_
|

|
ALATCH __h /: \

— — I —_— J
PSEL, BST1-8ST3 VALID CODE VALID CODE X

)

I ; !

MEM QI :)I

| |
o | —

| 1 1

| | 1

RD |]

] 1

| |

—_ 1 |
WE ' \ / N\ /_‘I

1
MEMORY
[WATE e AT]
\ NO WAITS . H

NOTES:
(1) Address and PSEL are valid.
(2) Memory write data valid.
(3) READY is sampled at this time.

FIGURE 10 — MEMORY WRITE CYCLE OPERATION

16

3.2.2

PSEL, BST1-85T3 __X___VALID CODE Y VALID CODE

3.2.3

3.2.3.1

Memory Read Operations

The timing for a memory read cycle is shown in Figure 11. At the beginning of the cycle, the processor asserts
ALATCH, outputs the address and PSEL on the address-data lines, and pulls MEM low. The RAW output goes to a
high levei to indicate that the cycle is to be a memory read operation. The processor then pulls ALATCH low,
forces the address-data lines into the high-impedance state, and pulls RD low to enable the read data from memory
onto the address-data lines. The cycle may be extended by wait states using the READY signal, as described in
Section 3.2.5.

4) {4}

|
cikovr /[~____ /T __ /—
|
1 ! i) 1
A/D BUS XM X-2) - YOO X-—-~ - 2) --—-—-—-)O(—)q:(---
i P i
| @ | 3)
ALATCH /\ 7\

-3

MEM

[
|
l
X
|
[
|

)

) i
RO TN/ \ /T
| |

WE /I0CLK

I
MEMORY —-q-—— MEMORY READ —————————»
REA ONE WAIT STATE
NO WAITS |

|-

NOTES:
{1) Address and PSEL are valid.
(2) Bus is in input mode (drivers are tristated).
{3) Memory read data must be valid at indicated CLKOUT edge.
(4) READY is sampled at this time.

FIGURE 11 — MEMORY READ CYCLE OPERATION
Extended Memory Addressing
Several techniques are available for extending the address reach of the processor. These techniques use the PSEL
and bus status codes (BST1-BST3) to provide for extended address reach by defining additional 64K byte pages
of memory based -on information output by the processor during every memory cycle.
Memory Paging

Status bit 8 of the status register is inverted and multiplexed on the PSEL/DO/OUT pin. PSEL may be used as a
17th address bit to select between two pages of 64K bytes for a total address reach of 128K bytes of physical
memory.

The PS?signal output occurs concurrently with the memory address when ALATCH is active high. The following
instructions force the PSEL output to the high state regardless of the value of ST8 of the status register:

[J RTWP return from interrupt

® XOP extended operations (software trap)

® All interrupts
o

All I/0 instructions

17

In addition, the LST (load status) instruction can modify the PSEL output if the state of ST8 of the status register is
changed by the instruction. The long distance source/destination instructions (LDS, LDD) cause the PSEL to be in-
verted from the previous state during the source or destination access by the instruction foliowing LDS or LDD,
respectively. {see Section B.3).

3.2.3.2 Functional Segmentation

In addition to paging capability using the PSEL output, memory may be segmented functionally into an instruction
segment and a data segment. Referring to Table 2, the bus status codes IOP and IAQ may be decoded to create a
segment-select line for differentiating between references to the instruction segment and the data segment. Note
that BST3 is a ‘‘don’t care’’ during the decode operation. The decoding necessary to distinguish between
references to data and instruction segments is shown in Figure 12. Figure 13 illustrates the hierarchy of a 256K
byte physical memory system utilizing the memory paging and functional segmentation techniques.

::-Tr;—cﬂ INSTRUCTION/DATA
s J

FIGURE 12 — FUNCTIONAL SEGMENTATION LOGIC

MAIN MEMORY SPACE

|

] 1
INSTRUCTION DATA
SEGMENT SEGMENT
(64K) (64K)
PAGE 0 PAGE 1 PAGE 0 PAGE 1
(64K) (64K) (64K) (64K)
\. /
\4
256K BYTES

FIGURE 13 — TM$99000 EXTENDED ADDRESSING

3.2.3.3 Memory Mapping Techniques

The TMS99000 may utilize the TIM996 10 memory mapper (SN74LS610) device to extend the address reach of
the processor to 16 megabytes. The TIM996 10 device contains 16 12-bit map registers, which are selected by
the TMS99000’s four most-significant address lines. These 12 bits are output from the TIM996 10 and appended
to the address bus as the most-significant address lines. Thus, mapped pages may reside on any 4K-byte address
boundary.

18

The PSEL output may be used to enable/disable the operation of the memory mapper. If PSEL is connected to the
MM pin of the mapper circuit, the mapping of the internal map registers occurs only when PSEL is low. When PSEL
is inactive high, the four address bits present on the register-select inputs are passed through to the outputs un-
changed. This allows for correct operation when interrupt or XOP (extended operations) vectors are fetched from
predefined locations.

The TMS891 10 contains two instructions which are designed to facilitate operation with a TIM996 10 memory
mapper. They are Long Distance Source (LDS) and Long Distance Destination (LDD), These instructions are
described in more detail in the TMS991 10 supplement (Appendix B). The LDS and LDD instructions invert the
PSEL output when performing source and destination operand fetches of the foilowing instruction. This allows an
instruction to reach operands outside the boundaries of the current page. Figure 14 illustrates the interface
between a TMS99000 and the TIM996 10 memory mapper.

L
A
T [16 ADDRESS BUS 24
H
LATCH ;
TMS99000 2 ITimMag610
MPU MEMORY | 12
PSEL MAP ENABLE MAPFER
DATA BUS

3.2.4

FIGURE 14 — TMS99105A OR TMS99110A TO TIM99610 MEMORY MAPPER INTERFACE

Direct Memory Access

The processor provides the signals necessary to allow DMA devices to directly transfer information to and from
the system memory. To gain control of the local bus interface, the DMA device sends a hold request to the pro-
cessor by pulling the processor HOLD input low.

The timing for the hold cycle is presented in Figure 15. Assume that HOLD is pulled low during a memory write cy-
cle, as indicated in the example of Figure 15. As soon as the ongoing cycle is complete, the processor responds to
the HOLD signal by outputting a HOLDA bus status code (MEM, R/W and BST1-BST3 are all driven high); this
signals its impending surrender of the local bus to the DMA device. The bus status code is held only for a quarter
state, long enough to be latched externally on the falling edge of ALATCH. As soon as ALATCH has made its high-
to-low transition, the following output signals are forced to the high-impedance state: MEM, R/W, BST1-BST3,
_W—E/|OCLK, RD and the address-data lines. At the beginning of the next machine state, the ALATCH signal is
driven high for a quarter state, after which it also is forced to high impedance. These lines remain in the high im-
pedance state for the duration of the hold cycle. The CLKOUT output line, on the other hand, remains active
through the hold cycle. The DMA device takes control of the local bus and performs its transfer or transfers of data
to or from main memory. When the DMA device has completed its transfers, it deactivates the HOLD signal. The
processor responds by removing the HOLDA bus status code, and leaves the hold state to resume processing.

19

CLKOUT _.'_J,—\ . ey o — — — — /_
apBUs X mmmm m— —mmt L OE--XX
ALATCH WA /\ e mm — —m— o —— = - __U
SIETE anmw SR R S . =

Sy T S S
RW \ oAb L/

RD

I
o ! i] | hiz ' -
WENOCLK | e e ——m —m————— = =T

JB (i i | i

HOLD A \\N / | m
| 1 |
| PRIOR | HOLD CYCLE I NEXT
| STATE le——— MAY BE ANY NUMBER OF CLOCKS ————— 8= STATE
| (WRITE | | (READ SHOWN)
| SHOWN) | |

NOTES:

(1) CLKOUT edge at which HOLD is sampled.

(2) Tristate all outputs except ALATCH as follows:
s BST({1-3) and | R/W are first driven high to indicate hold acknowledge, and then tristated.
o MEM, RD, WE, and R/W are first driven high, and then tristated.
e The data bus is tristated as is.

{3) ALATCH is first driven high, and then tristated.

(4) All outputs become active again.

FIGURE 15 — MEMORY CYCLE — DMA HOLD OPERATION

The processor samples HOLD at the falling edge of each CLKOUT pulse. Sampling of HOLD occurs even while the
MPILCK (multiprocessor interlock) bus status code is being output (Section 3.4.4) in order to reduce worst-case
DMA latency.

If HOLD is asserted at the beginning of a reset operation, the processor requests no memory cycles until HOLD is
removed. This permits automatic DMA loading of memory after power up. When HOLD and RESET are pulled low
at the same clock edge, the RESET bus status code will be output prior to the HOLDA bus status code and for as
long as RESET remains active low.

If the READY input signal is low when HOLD is released, the hold cycle is extended with wait states until READY is
allowed to go high.
3.25 Memory Wait-State Generation

The READY input is held low to extend memory, 1/0, and internal bus cycles by an arbitrary number of wait states.
Wait states continue to be generated until READY is released (i.e., allowed to go high). Wait state generation for
1/0 cycles is presented in Section 5.

READY is low during the first machine state of a memory cycle, however, the cycle is extended by one wait-state.
If READY continues to be held low, the memory cycle is extended by additional wait-states until READY goes high.

20

3.3

External Macrostore accesses are treated as a special type of internal cycle. These cycles can be extended with
wait-states by pulling READY low (see Section 7).

The timing for wait state generation during memory cycles is shown in Figure 16. This same technique may be
used for machine cycles which are neither memory nor 1/O cycles (i.e. internal cycles). Thus care must be taken
when designing circuitry controlling the READY input. As indicated in the figure, READY is sampled at the falling
edge of CLKOUT.

cLkout _/'_/'\./' _/_/'_/'_/' ./'_/\./'\./'
ALATCH /'\ /'\ /'_ N

READY ’ 0""" ’ ’v’v.v'v.v
(3) P
NO WAIT STATE ONE WAIT STATE ONE WAIT STATE
GENERATED BY READY GENERATED BY WAITGEN

NOTES:
{1) First sample time of READY during bus cycle.
{2} Second sample time of READY during bus cycle. Additional wait states are generated by keeping READY low at this and subse-
quent sample times.
(3) XXXXXX denotes don’t care.
(4) READY is sampled on non-memory as well as memory cycles.

FIGURE 16 — WAIT-STATE GENERATION FOR MEMORY BUS CYCLES

PROCESSOR INTERNAL CYCLE INDICATION

The bus status code output by the processor distinguishes internal cycles from memory and I/O cycles. Referring
to Table 2, the AUMSL, AUMS, RESET, WP, ST, MID, and HOLDA codes indicate the particular type of internal cy-
cle in progress. The AUMS or AUMSL code is output during accesses of external Macrostore.

The MPILCK {(multiprocessor interlock) condition is signified by BST =000 and can remain in effect during an inter-
nal cycle, as indicated by the AUMSL bus status code.

Each internal cycle begins with an ALATCH pulse. During an internal cycle, a low READY signal will generate wait-
states. Activity on the local bus interface during internal cycles is discussed in Section 10.6.4.

21

3.4

3.4.1

3.4.2

3.43

3.4.4

Applicable Bus Status Codes

Tha hie statiie nndas that ara ralavnant +a tha intarfana hatuwiaan tha nranacenr and sustam mamaory ara dascrihaed
1 NS DUS STaTUS CCGes tnatl aré resvant 10 nd intervals ocetween tne processor and sysiem memory are céscripec

in the following paragraphs. Each bus cycle — memory, I/0 or internal — is accompanied by a bus status code con-
sisting of the MEM and BST1-BST3 output signals, as indicated in Table 2. The bus status code for each bus cycle
becomes valid during the ALATCH pulse at the beginning of the cycle and remains valid through the remainder of
the cycle. An access of internal Macrostore is classified as a special type of internal cycle. and is accompanied by
the AUMS or AUMSL bus status codes.

Memory Read Cycle Codes

For all memory read cycles, MEM is active low. The bus status codes (from Table 2) differentiate the following
types of memory read cycles:

® |AQ - instruction acquisition

® |OP - fetch data from the instruction stream (immediate operands, symbolic addresses, or second word of a
two-word instruction)

SOP - source operand
SOPL -~ source operand with MPILCK asserted
DOP - destination operand

INTA — fetch of interrupt or XOP trap vector {WP and PC), including NMI and reset

WS — workspace (Note that the WS bus status code will occur only when workspace register addressing is
used. When the workspace is accessed via other addressing modes (i.e., symbolic), the WS code will not be
output.)

[] GM - general memory

During an indivisible (semaphore) operation, the MPILCK bus status code becomes active at the start of the source
operand read cycle (Section 3.4.4).

Memory Write Cycle Codes

For all memory write cycles, MEM is active low. The bus status codes differentiate the following types of memory
write cycles:

® SOP - source operand
® DOP — destination operand

L4 WS — workspace (Note that the WS bus status code will occur only when workspace register addressing is
used. When the workspace is accessed via other addressing modes (i.e. symbolic), the WS code will not be
output.)

® GM - general memory

Hold Acknowledge Code — HOLDA

The processor outputs the HOLDA bus status code (Table 2) upon relinquishing the local bus in response to an ac-
tive HOLD or APP input signal.

Multiprocessor Interlock Code — MPILCK

The MPILCK bus status code provides a means for implementing an indivisible test-and-set mechanism. Such a
mechanism is required to insure system integrity in applications in which multiple processors communicate by
means of semaphores located in shared memory. Whenever the processor outputs the MPILCK code, external
logic inhibits memory accesses by the other processors in the system. The MPILCK signal is indicated by BST1-
BST3 =000 {(refer to Table 2), and is output during execution of the ABS {(absolute value), TSMB (test and set),
and TCMB (test and clear) instructions, as shown in Figure 17. The MPILCK code becomes valid during the source
operand fetch (indicated by the SOPL code in Table 2) remains active through the internal cycie (AUMSL), and is
removed as the next cycle {either an SOP or WS) begins.

22

alAtTcH _/ \ / \ / __ / _ / \ /

BST(1-3) _Y__SOPL(2) Y AumsL __Y__soriz) X 1AQ_— XY aums)
! I

3.4.5

4.1

1 L}
| FETCH | AW | whrre | FETCHNEXT | LAST STATE :
| OPERAND | OPERATION: | ABSOLUTE | INSTRUCTION | OF ABS I
| FOR ABS | ABSOLUTE | VALUE I | INSTRUCTION |
) INSTRUCTION | VALUE I : I I
! |

| @«—— INTERLOCKED READ/MODIFY/WRITE——— | (1)

NOTES:
(1) The SOPL or AUMSL code indicates that the lock is in effect through the next bus cycle.
(2) [f Ts=0 {register source operand), an interlock will not be performed. WS will appear instead of SOPL or SOP.

FIGURE 17 ~ MULTIPROCESSOR INTERLOCK TIMING — ABS, TSMB, TCMB INSTRUCTIONS

The MPILCK code is not output if the source operand for an ABS, TSMB or TCMB instruction is located in the
workspace. In this case, the SOPL-AUMSL-SOP bus status code sequence described above is replaced by WS-
AUMS-WS.

The TMS99000 does not inhibit the sampling of HOLD while MPILCK is active; the processor will respond to the
HOLD signal by replacing its MPILCK bus status code with the HOLDA code and entering hold. Using the MPILCK
signal to inhibit contention for shared memory is therefore not sufficient to insure the integrity of systems which
allow DMA devices to modify semaphore locations. In such systems, DMA devices must monitor MPILCK to avoid
asserting HOLD during indivisible operations.)

Macrostore Accesses

The AUMS or AUMSL (arithmetic logical unit or Macrostore) bus status code is used to indicate either a
Macrostore access or an internal processing cycle; i.e., the same status code is used for both types of operation.
The AUMS or AUMSL bus status code serves to distinguish accesses of external Macrostore from I/O accesses or
accesses of the user’s main memory. A complete description of Macrostore accesses is given in Section 7.

INTERRUPT STRUCTURE

TMS99000 INTERRUPT STRUCTURE

The TMS99000 provides 16 interrupt levels, each supported by its own trap vector located in memory. The trap
vector for each interrupt level is a two-word structure containing the WP (first word) and PC (second word) values
of the service routine. When an interrupt occurs, the ensuing context change causes the processor’s internal PC
and WP registers to be loaded with the values from the corresponding trap vector. The locations of the trap vec-
tors for the 186 interrupt levels are given in Table 3. Interrupt level O is the highest priority, and level 15 the lowest.
The reset function uses level O. Level 2 is reserved for the illegal instruction trap, the privileged opcode violation
trap, and (at the user’s option) the arithmetic fault trap. The occurrence of the arithmetic fault and privileged viola-
tion interrupts (when unmasked) causes the external maskable interrupts to be ignored until after the context
switch for these interrupts has occurred. Levels 1 through 15 can be used for external device interrupts; level O
can also be used for external interrupts if external hardware is provided (Section 4.2).

23

NOTES: (1)
(2)
3)

(4)

TABLE 3 — INTERRUPT LEVEL DATA

VECTOR LOCATION MASK VALUES | VALUE MASK SET
INTERRUPT {(MEMORY ADDRESS DEVICE TO ENABLE TO UPON TAKING
LEVEL IN HEX) ASSIGNMENT (ST12 THRU ST15)| THE INTERRUPT
(ST12-ST15)
RESET 0000 External 0 through F 0
ILLOP 0008 Internal (see Note 4) 1
NMI FFFC External O through F (o]
ARITHMETIC 0008 Internal (see Note 2, 3) 1
FAULT
PRIVILEGED 0008 Internal {see Note 3) 1
VIOLATION
[o] 0000 External O through F o)
(see Note 1)
1 0004 External 1 through F (o]
device
2 0008 External 2 through F 1
device
3 000C o 3 through F 2
4 0010 " 4 through F 3
5 0014 " 5 through F 4
6 0018 " 6 through F 5
7 001C - 7 through F 6
8 0020 “ 8 through F 7
9 0024 " 9 through F 8
A 0028 " A through F 9
B 002C “ B through F A
Cc 0030 “ C through F B
D 0034 " D through F Cc
E 0038 " EandF D
{Lowest F 003C External F only E
priority) device

Level O cannot be disabled.

Arithmetic fault interrupt is generated internal to the Alphs and is enabled/disabled by bit 10 of the status register.

The occurrence of the arithmetic fault and privileged violation interrupts (when unmasked) causes the external maskable interrupts to be ignored
until after the context switch for these interrupts has occurred.

The ILLOP lillegal instruction) interrupt is generated internal to the 99000 and cannot be disabled by the interrupt mask.

External device interrupt requests are transmitted to the processor through the INTREQ and ICO-IC3 input pins.
The interrupt level, in the range O to 15, is encoded on the four IC (interrupt code) lines, and the interrupt request
is generated by pulling INTREQ low. Figure 18 shows the timing for the external interrupt interface. Activation of
the INTREQ input causes the processor to compare the interrupt code, ICO-IC3, with the interrupt mask in bits 12
through 15 of the status register. If the level of the pending interrupt is less than or equal to the enabling mask
level (higher or equal priority interrupt), the processor recognizes the interrupt and initiates a context switch as
soon as the current instruction completes execution. The processor then fetches the new context (WP and PC)
from the appropriate trap vector and at the same time forces the PSEL output high, as indicated in Figure 18. Dur-
ing the fetch of the new WP and PC values, the INTA (interrupt acknowledge) bus status code (Table 2) is output.
Next, the previous context, consisting of the WP, PC and ST values from the interrupted program is stored in WRs
13, 14 and 15, respectively, of the new workspace. Status bits 7 through 11 are cleared to insure that the
arithmetic fault interrupt enable (ST10), map enable (ST8), and privileged mode (ST7) status bits are not carried
over from the interrupted program. Next, the processor forces the interrupt mask to a value that is one less than
the level of the interrupt being serviced, except in the case of a level O interrupt, for which the mask is set to all
zeros. This mechanism insures that the service routine for an external interrupt of level 1 through 15 will be inter-
rupted only in the event that a higher-priority interrupt request is received. Upon switching to the service routine,
the processor inhibits further interrupts until the first instruction of the service routine has been executed.

24

CWUT /N /NN
| |
|

awaTeH N\ M\

BST(1-3) IAQ Y VARIOUS Y Y INTA Y INTA Y WP !We ~VAG Y AUM
i

2) i i
ONE
—* cLock 1) :
-— I
INTREQ XY XOOUXYXOYY /O X XY XY XX XX XYY, =~ m
o~
ico-3) XOCOOOONOCONINY. X OO XXX ~ R XXX XE
' LasT sTATE OF | sTaTus ' FETCH : FetcH ! we | save | FeETCH
I prEvious lurDATE INew New !up- 'owp | Next
: INSTRUCTION ! | WP i PC : DATE | wp, : INSTRUCTION
(ALWAYS THE NEXT I I pesT |
STATEAFTERIAQ) (4)— el CONTEXT SWITCH SEQUENCE le———
(AUMS STATES NOT SHOWN)
NOTES:

(1) INTREQ and IC(0-3) are first sampled during the IAQ cycle, but if wait states occur in the cycle that follows the IAQ cycle, samples will continue to
be taken until one clock before the end of that cycle. Only the last sample taken is examined by the processor’s interrupt logic to determine whether
to take the interrupt. Sampling occurs at the high-to-low transition of CLKOUT.

(2) The prefetched instruction will be discarded when the interrupt is accepted.

{3) INTREQ is not sampled during the first instruction fetch following the interrupt context switch sequence,

(4) Bus cycles, during which the AUMS bus status code is output, are omitted from the figure for simplicity.

FIGURE 18 — INTERRUPT SEQUENCE

In order to insure recognition of an interrupt request, the request should remain active until acknowledged either
by software in the interrupt service routine or by hardware keyed to the INTA bus status code. If a software inter-
rupt acknowledgment is used, the interrupt service routine must reset the interrupt request before the routine is
completed. If hardware interrupt acknowledgment is used, the interrupting device must monitor four bits of the
address bus (A10-A13) to determine which interrupt level is being acknowledged. In the event that an interrupt
level is shared by more than one device, a hardware or software priority scheme must identify the interrupting
device.

The interrupt code on the ICO-IC3 inputs will continue to be sampled as long as INTREQ remains active low. If the
code specifies an interrupt level that is disabled initially by the interrupt mask value, the INTREQ input can be held
low until the processor alters the mask to a value that allows the interrupt request to be recognized. The external
interrupt interface is synchronous. The ICO-IC3 inputs must be stable during the falling edge of CLKOUT at which
time they are sampled.

The interrupt vector is typically read from memory, but the system can be constructed so that the interrupting
device itself supplies the interrupt vector via the memory bus. In this case, a hardware decoder triggered by the IN-
TA bus status code and address bits A10 to A14 (these indicate the interrupt level and whether the WP or PC
value is being read) enables the interrupting device (and disables memory) when the processor fetches the inter-
rupt vectors.

Should the service routine for one interrupt level be interrupted by another interrupt of higher priority, a second
context switch occurs to service the higher-priority interrupt. When the service routine for the higher-priority inter-
rupt is complete, an RTWP instruction is executed to resume processing of the lower-priority interrupt. All inter-
rupt service routines should terminate with the RTWP instruction to restore the context of the interrupted pro-
gram.

25

4.2

INTERRUPT LEVEL O AND RESET

The love! C trap vector is utili nd the level O external interrupt. The reset function is ac-

HH 82 ~ OXIS osetl ctio

tivated by pulling the RESET input low. As indicated in Figure 19, the processor samples RESET on each high-to-
low transition of CLKOUT. The RESET signal causes the processor to cease instruction execution at the end of the

current bus cycle, and the WE/IOCLK, RD, and MEM signals are forced inactive high and R/W is forced low in-
dicating the AD bus will tristate. The processor remains in this state until RESET is released.

cwour _/_/M\ M\

asteh A\ M\

[| | | i

BST{1-3) (1) (m X RESET. X INTA Y INTA X WP
l | | { |

— | 1 2 |

RESET ~ \ Vs /4

NOTES:

[G " " \
RO T W W /S \J
WE W W W

I

| START CONTEXT
| SWITCH FOR

| RESET

{1) The bus status codes during these cycles depend on the instruction being performed at this time.

(2

(3)

RESET is sampled at every high-to-low CLKOUT transition. RESET is required to be active-low-for a minimum of three sample times so that the se-
quence can occur correctly.

The reset context switch begins two CLKOUT cycles after RESET is sampled as having returned to the inactive-high level.

FIGURE 19 — RESET SEQUENCE

When RESET is released, a context switch to the level O service routine is initiated. The processor acquires the
new WP and PC values from the trap vector located at memory address O; it stores the old WP, PC and ST values
in the new workspace; and it clears all status register bits and all internal error interrupt status bits to 0. If NMli is
not active, the processor fetches the first instruction of the reset service routine. Otherwise, the NMI trap occurs
after the context switch for the reset trap completes, but before the first instruction of the reset routine is ex-
ecuted.

A level O external interrupt is requested by pulling the processor’s INTREQ input low while ICO-IC3 are all low. In
general, the use of the level O interrupt requires that the request be removed when the INTA bus status code is
output. Otherwise, the interrupt will be accepted a second time since it cannot be masked, and the return context
will be lost. Note that the level O external interrupt is not the same as RESET but rather an external nonmaskable
interrupt which uses the same trap vector as RESET.

26

4.3 NON-MASKABLE INTERRUPT (NMI)

The NMI cannot be masked out. It is enabled by all values of the interrupt mask. The NMI implements ROM
loaders, single-step and breakpoint fu_n_t_:lions for maintenance panels, and other user functions. An NMl request is
generated by pulling the processor’s NMI input low. This signal and its associated function are named ‘'LOAD’* in
some previous 9900 family products.

An NMi request is handled according to the basic interrupt timing sequence described previously. The timing for
the NM! is presented in Figure 20. As shown in Table 3, the NMI trap vector resides at memory address FFFC. The
interrupt mask is automatically cleared when an NM! occurs.

LS o NI o N/ N N2 N/ N N W e I
| ! | i

(m) I |

aen "/ \ /MO

! I | Fo ! 1 l 1 I i

-~
BST(1-3) 1AQ VARIOUS Xost (inta XOINTa X we X ws~ X 1Aaa X AU
cLock le—
- ~
NMi SOOOCOCOOGO00GN. /OO ~X TR RO
(2
icio-3) O OO X YR T X R X XXX SRR KK
i LAST STATE OF | STATUS | FETCH: | FETCH | UP- | STORE { FETCH
| PREVIOUS | UPDATE [NEW | NEW | DATE |OLD | NEXT
| INSTRUCTION | | wp | PC I wp WP.PC | INSTR
| I sT |
| |
—| CONTEXT SWITCH SEQUENCE |¢—
| (AUMS STATES NOT SHOWN) |
NOTES:

(1) NMl is always sampled but will not be acknowledged until after the IAQ cycle.
(2) After an NMI context switch has been initiated, NMi can remain active-low indefinitely without causing another NMI request to be generated. In

order to generate another NMI request, NMI must be taken inactive high and be sampled at least once at the inactive level before being activated
again. (NM! is sampled on the high-to-low transition of CLKOUT.)
(3) The prefetched instruction will be discarded as soon as the NMI request is recognized.

FIGURE 20 — NMI SEQUENCE

The processor almost always grants NMI request immediately following completion of the current instruction. The
only exceptions to this statement are user-defined instructions emulated in Macrostore that use opcode >0384 to
exit Macrostore (described in Section 7).

4.4 INTERRUPT LEVEL 2

The level 2 trap vector is used for external interrupts as well as for the following internal trap conditions:
arithmetic fault, illegal instruction, and privileged opcode violation. Sampling of the level 2 external interrupt {and
of all other interrupts as well) is delayed until the end of each instruction (Figure 18) to facilitate non-ambiguous
error reporting. An error detected by external logic during execution of an instruction will be recognized (if level 2
interrupts are enabled) before the next instruction is executed. The PC value stored during the level 2 context
switch points to the instruction following the one which generated the error. The external level 2 interrupt should
be reserved for system errors such as memory faults and access violations. A memory error generated by the in-
struction prefetch should be delayed for one non-DMA bus cycle by external logic to insure that the memory error
is associated with the prefetched instruction rather than with the instruction preceding it.

27

4.4.1

The error interrupt status bits are located at the I/O addresses shown in Table 4. Appropriate bits defined in
Table 4 are set at the time the error occurs. A level 2 interrupt request is generated as long as any bit in the error
status regisier, except the iLLOF {iliegal instruction] fiag, is set. The iLLOP fiag is set under controi of Viacrostore
emulation software, as described in Section 4.4.3. The error status bits can be examined by the level 2 interrupt
service routine to determine the cause of the interrupt. The active bit{s) must be reset using a bit /0 operation
(SBZ or LDCR) to acknowledge the condition and remove the interrupt request. This is not strictly necessary in the

case of the ILLOP flag since it does not generate an interrupt request.

TABLE 4 — ERROR INTERRUPT STATUS BIT ASSIGNMENTS

1/0 ADDRESS
ERROR FLAG INPUT BIT | OUTPUT BIT
PRIVOP (privileged violation) >1FDC >1FDC
ILLOP (illegal instruction code) >1FDA >1FDA
AF (arithmetic overflow — ST4 and ST10 on) >1FC8 >1FC8

Each bit is individually cleared by writing a O to the bit, e.g., by means of an SBZ or LDCR instruction. When I/O in-
put operations are performed, the external IN input line is ignored. Writing a 1 to I/0 address locations >IFCO to
> IFC7 will cause all three flags (PRIVOP, ILLOP and AF) to be set to 1. Writinga 1 to > IFD3 or > IFD4 will set the
ILLOP or PRIVOP flag to 1, respectively.

When a level 2 interrupt has occurred, the level 2 service routine reads the I/O error interrupt status bits using the
STCR or TB instruction to identify the source of the error. The interrupt is cleared by writing a O to the appropriate
bit. The error interrupt status bits are automatically cleared by executing any of the following operations:

L] RSET instruction
® Reset function (external device puils RESET input low)

® |/O output operations to the bit{s) /0 address.

Arithmetic Fault Interrupt

The TMSS89000 can be programmed to generate an interrupt when an overflow occurs during an arithmetic opera-
tion. This permits arithmetic fault checking to be performed without software overhead. The arithmetic fault inter-
rupt is controlled using three programmable flags: bits 4 and 10 of the status register (Table 15) and AF of the er-
ror interrupt status bits (Table 4). ST4 is the arithmetic fault flag and is set to 1 whenever an overflow occurs.
ST10 is the arithmetic fault enable bit and is set or cleared by the programmer to enable or disable, respectively,
the arithmetic fault interrupt. AF of the error status register is automatically set when both ST4 and ST10 are 1.
When set and the interrupt mask is greater than or equal to 2, AF generates a level 2 interrupt request, which is
handled according to the standard interrupt sequence described in Section 4.2.

If an arithmetic overflow occurs while ST10 is 1 and the interrupt mask contains a value in the range 2 through
15, alevel 2 interrupt occurs directly upon completion of the instruction causing the overflow. The PC value saved
during the resulting context switch is the address of the first word of the instruction immediately following the in-
struction that caused the overflow.

The level 2 interrupt service routine must check ST4, ST 10 of the saved status register in the routine’s workspace
register 15 (WR15) and AF to determine that the interrupt was caused by an overflow. The service routine, which
is invoked by the arithmetic fault interrupt, must clear the AF bit and either bit 10 or bit 4 of WR15 before return-
ing to the routine which caused the overflow. If this procedure is not followed, the arithmetic fault will falsely oc-
cur immediately upon the completion of the RTWP instruction.

Should the level 2 interrupt service routine be interrupted, in turn, by a higher-priority interrupt, the arithmetic fault

condition is retained in AF until the program explicitly clears it. Similarly, ST4 and ST10 are preserved when the
status register is saved during the context change; they are restored upon return from the higher-priority interrupt.

28

4.4.2

443

Macroinstruction Detection (MID) Trap

The MID trap permits the detection of illegal opcodes and the emulation of opcodes not defined in the processor in-
struction set. Emulation can be performed either in hardware or software. Hardware emulation takes place using
the attached processor interface discussed in Section 8. Software emulation routines are contained in the
Macrostore, described in Section 7.

The acquisition of an undefined opcode during an instruction fetch causes an MID trap to occur immediately

before the processor attempts to execute the instruction. A list of the opcodes, which cause the MID trap, are
iisted in Section 10.5.19 and consists of all opcodes undefined in the basic instruction set of the processor.

These are referred to as MID opcodes. The XOP instruction is also treated as an MID opcode in the event that bit
11 of the status register is set to 1.

Whenever the processor detects an MID opcode in the instruction stream, a check is made to determine whether
an attached processor is prepared to execute the instruction.

If not, program control is transferred to the external Macrostore in the case of the TMS89105 or internal
Macrostore in the case of the TMS99110 to allow the instruction to be emulated in software (see Section 4.4.4).

The sequence of actions that takes place during an MID trap is as follows. Upon detecting an MID opcode, the pro-
cessor outputs an MID bus status code (ﬁﬁ’a =1,BST=110). If an attached 1ed processor is prepared to execute the
instruction, it responds to the MID status code by pulling the processor’s APP input low. If APP remains inactive,
program control is transferred to the Macrostore. The PC saved during the context switch points to the word
following the MID opcode. If the MID opcode is foilowed by immediate data or address information, the emuiation
routine can use the saved PC value to access this information. In a likewise manner the program may use the sav-
ed workspace pointer (WP) to access operands in the calling routines workspace.

The MID trap is non-maskable . and is higher in priority than any other interrupt except the reset function (RESET
active low). An MID opcode always results in an MID trap regardless of the value of the interrupt mask. If an NMi
request is received at the same time that an MID opcode is detected, the MID trap sequence will take place first
and be followed immediately by the NMi sequence before the attached processor or Macrostore software begins
to emulate the MID instruction. This permits the NMi input signal to control single-stepping in conjunction with
MID opcodes and microcoded processor opcodes alike.

When a user program attempts to execute an MID opcode that is defined neither by an attached processor nor by a
Macrostore emulation routine, the Macrostore software should detect this fact and initiate a level 2 interrupt. This
is accomplished by the special form of the RTWP instruction (opcode >0382), which causes the processor to set
the ILLOP bit of the error status bits and then exit Macrostore memory space. This provides an indicator to the
level 2 trap routine undefined opcode violation. If Macrostore is disabled at Reset, then an MID opcode will
automatically cause the ILLOP bit to be set and a level 2 trap to occur.

lllegal Instruction {ILLOP) Interrupt

The illegal instruction interrupt is a result of a Macrostare exit through the execution of the special form of the
RTWP instruction (opcode >0382) when in Macrostore {section 4.4.2}. The level 2 interrupt routine can identify
the illegal instruction interrupt by interrogating the ILLOP bit of the error status bits.

This method is not reliable in detecting illegal instructions within level O or level 1 interrupt routines. The context
linkage may be lost if two successive level O or level 1 external interrupts occur unless a software stack is created.

The ILLOP trap permits the system to respond to illegal opcodes. When an illegal opcode is first encountered, the
processor performs two preliminary checks before setting the ILLOP error interrupt status flag and vectoring to the
level 2 interrupt routine. First, the processor outputs the MID (macro-instruction detected) bus status code to
determine whether an attached processor is prepared to execute the instruction. If not, the processor transfers
contro! to the emulation software in Macrostore to determine whether it recognizes the opcode. If this test also
fails, the opcode is illegal. The Macrostore software sets the ILLOP flag and returns control to the user’s program
in main memory. The processor traps immediately to the level 2 interrupt routine before it has a chance to resume
execution of the user’s program. Once the trap has occurred, the level 2 interrupt routine checks the ILLOP flag to
determine if the trap was caused by an illegal instruction. The ILLOP interrupt is non-maskable.

29

4.4.4

4.4.5

5.1

For further information, refer to the discussion of MID opcodes in Section 4.4.2.

Privileged Opcode Violation interrupt

When a privileged opcode violation occurs, as described in Section 6, PRIVOP, the error interrupt status bit is set
and, if the interrupt mask is greater than or equal to 2, generates a level 2 interrupt request. The offending instruc-
tion is permitted to complete any operand fetches it requires, but following detection of the violation, all further at-
tempts to write to the I/O address space are inhibited. As soon as the offending instruction completes execution, a
level 2 interrupt takes place unless the interrupt mask value is O or 1. The trap sequence for the level 2 interrupt
consists of a standard context switch, after which program control is transferred to the level 2 service routine. The
routine checks the PRIVOP bit to determine if the interrupt was caused by a privileged opcode violation. PRIVOP
should be cleared by the service routine before returning; otherwise, another level 2 interrupt will occur upon
return unless the interrupt mask is set to a value of O or 1.

If a privileged opcode violation occurs while the interrupt mask is O or 1, the level 2 interrupt is disabled and does
not take place. The PRIVOP bit is still set, and any write operations attempted by the offending instruction are in-
hibited as before. Execution of succeeding instructions will occur normally, however, until the interrupt mask is
set to a value of 2 or greater, at which point the PRIVOP bit, which has remained set, causes a level 2 interrupt to
occur.

Applicable Bus Status Codes

The INTA (interrupt acknowledge) bus status code is output by the processor to indicate that a reset, NMI, XOP (if
ST11 =0), external interrupt or any of the level 2 interrupts is in progress. The INTA is output during the fetch of
the WP and PC values from the trap vector for the interrupt or XOP.

If desired, the INTA bus status code can be used as a signal to automatically acknowledge an interrupting device.
The acknowledgment signal is generated by hardware external to the processor that can recognize the INTA code
and determine the interrupt level by decoding address bits A10 through A13.

TMS99000 INPUT/OUTPUT INTERFACE

DESCRIPTION

The TMS99000 provides both bit-serial and bit-parallel I/O to meet the requirements of both bit, byte and word
peripheral applications. TMS99000’s I/O is a command-driven direct 1/O interface that supports bit, byte and
word data transfers. The 1/0 address space contains 32768 peripheral input locations, and 32768 output loca-
tions. The first 16384 I/O addresses (input or output) are bit locations accessed in bit-serial fashion; the last
16384 I/0 addresses are word or byte locations {as specified by the user) accessed in bit-parallel fashion. Figure
21 provides the I/O address map for the TMS99000.

30

BIT-SERIAL 1/0 SPACE BIT-PARALLEL I/Q SPACE

(MSB OF BASE ADDRESS IS 0) (MSB OF BASE ADDRESS IS 1)
0000 8000
~ o~ ~) o~
NON-PRIVILEGED 1/0 ADDRESS SPACE
1BFE 9BFE
100 9Cc00
PRIVILEGED 1/O ADDRESS SPACE
1EC4 EXTERNAL
1ECE INSTRUCTIONS
1FCO ERROR STATUS
FEO INTERRUPT BITS
o~F o~ ~ o~
7FFE FFFE
BIT ADDRESS = BASE WORD OR BYTE ADDRESS
ADDRESS IN WR12 + = BASE ADDRESS IN WR12
BIT NUMBER*2

FIGURE 21 — I/0 ADDRESS MAP

The I/O interface utilizes the same signal lines as the interfaces for main memory and external Macrostore, as in-
dicated in Figure 22. The I/O address space, however, is logically distinct from the memory and macrostore ad-
dress spaces. The timing for I/O read and write operations is presented in Figures 23 and 24. |/O operations are ac-
companied by the 1/O bus status code (MEM =1, BST=011) to distinguish them from accesses of memory or ex-
ternal Macrostore. (In fact, only two signals, MEM and BST2, are required for this purpose; see Table 2.)

3

< A/D O(IN ;A/D {1-14) ;A/D 15 (OUT)

ALATCH

TMS99000 WE /iOCLK
RD

/o
SYSTEM

 EERAVAER

READY

BST(1-3)

FIGURE 22 — TMS99000 /O INTERFACE

(4|-) (4) (4) 4) (4)
|

awowr N\N\S (WV\'_I/' _l/'_/'\f{.ll‘

A/D BUS Dlﬁ:)(z-)@loc X X2- ' 230 Dlﬁ)(z———)@‘OC
ALATCH M\ N\ /I /. S/

| | I I | | |
BsT1-8sT3 X X X)l(X C X
1 | | | |]
- T = 7 —
RD __/ n_/ T/
| | | | | |]
WE/IOCLK
] I | | | | |
Ty T = T+
: I | BITn |B|Tn+1: I [
SINGLE BIT MULTIPLE BITS, SINGLE BIT
NO WAITS NO WAITS ONE WAIT
NOTES:

{1) Valid address, PSEL high (internal ST8 =0)

{2) Bus in input mode (drivers are tristated}

(3) If MSB of address is O, I/O bit must be valid on DO/I/IN. if MSB of address is 1, /O word must be valid on A/D{0-15), and /0 byte on A/D(0-7).
(4) READY is sampled at this time.

FIGURE 23 - TMS99000 I/0 TIMING — INPUT OPERATION

32

(3) (3) (3) (3) 3
| | I I |

kst ANS NANANNS NANNS
apsus XIXZOOC XDE—0C
ALATCH _/___ '/|-\ {'_ |
mem T e X
we4so= A = A4

I

\/

RD

|
-
\I__
|
7 \J n__/

WE /IOCLK l l
|

|
— A =
] I |
| 1 |

| | |

| |
w \ yA A\
RIW i i 1
| | | BITn | BITn+1

SINGLE BIT MULTIPLE BITS SINGLE BIT
NO WAITS NO WAITS ONE WAIT

(1) Address is valid, and PSEL is high {internal ST8 =0).
{2) 1 MSB of address is 0, then valid I/0 bit is on D15/0UT. If MSB of address is 1, then valid I/O word is on A/D(0-15), and I/O byte is on A/D(0-7).
{3) READY is sampled at this time.

FIGURE 24 — TMS99000 1/0 TIMING — OUTPUT OPERATION

Each 1/O cycle begins with an ALATCH pulse, the falling edge of which latches externally the 15 address bits AO
to A14 and the PSEL page select signal. If AO, the MSB of the address, is 0, a bit-serial I/O operation is performed;
if AO is 1 during an LDCR or STCR instruction, a bit-parallel (byte or word) I/O operation is performed. The PSEL
output signal is forced high during all I/O cycles regardless of the actual state of ST8 of the processor’s status
register (Section 2.3.2). Following the ALATCH pulse, data is input or output on the address-data lines and RWis
taken high or low to indicate whether an input or output operation is to be performed. Serial I/O accesses utilize the
AQ/DO/IN line for reads, and the PSEL/D15/0UT line for writes. Parallel /O operations utilize all 16 data lines
{DO-D15) for word transfers, and the first eight (DO-D7) for byte transfers. i/O write operations are accompanied
by a low pulse on the WE/IOCLK output; /O read operations are accompanied by a low pulse on RD.

The minimum-length /O cycle is two machine states (two CLKOUT periods) in duration. If, during the second
machine state of a /0 cycle, READY is low, the cycle is extended by one wait-state. Holding READY low
generates additional wait-states until READY is taken high prior to the high-to-low transition of CLKOUT. Figure
25 illustrates the relationship between 1/O wait states and the READY line.

33

NOTES:

wor NS NNNS
ALATCH / \ / \ / \

|
reavy XRRERRRY NREX YRRKRR\ A%V QX

(3) I | |

NO WAIT STATE ONE WAIT STATE
GENERATED BY READY

{1) First sample time of READY in {/O cycle.
{2) Second sample time of READY in I/O cycle. Additional wait states are generated by keeping READY low at this and subsequent sample times.
{3) XXXXXX denotes don't care.

5.2

FIGURE 25 — WAIT-STATE GENERATION FOR /O CYCLES

The TMS99000 instruction set contains five I/O-oriented instructions. Three of the I/O instructions are used to
perform single-bit operations in the first 16384 bits of the /O address space. (See Figure 22) These are the TB
(test bit), SBO (set bit to one) and SBZ (set bit to zero) instructions. The remaining two |/O instructions perform
multiple-bit operations in either bit-serial or bit-parallel fashion, depending on which half of the I/O space is being
addressed.

SINGLE-BIT I/0 OPERATIONS

The single-bit instructions facilitate the testing and/or modification of a particular bit in a device. The three single-
bit 1/0 instructions, TB, SBO and SBZ, are executed as follows. The TB instruction reads the bit from the address-
ed I/0 location onto the AO/DO/IN line, and this bit is placed in status register bit 2 (EQ). The SBO instruction out-

puts a one on the PSEL/D15/0UT line, and the SBZ outputs a zero on this line.

The processor develops the address for a single-bit I/O operation from the base address contained in bits O to 14
of WR12 and from the signed displacement field contained in bits 8 to 15 of the instruction. As indicated in
Figure 26, the signed displacement *2 is added to the base address to generate the effective /O address output
onto the bus. The displacement allows two’s complement addressing from base — 128 through base + 127. Note
that for single-bit I/O instructions, SBO, SBZ, and TB, the most-significant bit of WR12 does not affect the opera-
tion (i.e., no parallel operations).

34

WR12

5.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

BASE ADDRESS

\ \ \ \ \ \ \ SIGNED DISPLACEMENT

BIT 8 SIGN EXTENDED

ADDRESS BUS

EFFECTIVE I/O BIT ADDRESS

FIGURE 26 — SINGLE-BIT /O ADDRESS DEVELOPMENT

MULTIPLE-BIT SERIAL I/O OPERATIONS

The STCR and LDCR instructions specify multiple-bit I/O operations. The starting address in I/O address space is
loaded into WR12 prior to executing STCR or LDCR. When the MSB (bit O) of the address in WR12 is O, the
transfer is performed in bit-serial fashion rather than in parallel. During a multiple-bit, bit-serial /O transfer, the first
bit is read from or written to the address pointed to by bits O through 14 of WR12. Consecutive bits are read from
or written to I/O locations separated by an address increment of + 1. The contents of WR12 are not altered by ex-
ecution of the serial STCR or LDCR instructions.

A multiple-bit serial I/O transfer is represented in Figure 27. Although a full 16-bit transfer is indicated in the
figure, any number of bits from one to 16 can be specified. The transfer mechanism results in an order reversal of
the bits; that is, bit 15 of the memory word (or bit 7 of the byte} corresponds to the bit stored at the lowest I/O ad-
dress, and bit O corresponds to the bit stored at the highest I/0 address.

I/0 INPUT BITS

N+1

N+14

N+15

5.4

5.5

1/0 OUTPUT BITS

| N
. | INPUT (STCR) N+ 1
®
o1l MEMORY WORD 14 | 15 °
° L]
[]
OUTPUT (LDCR) N+14
N+15

N = BIT SPECIFIED BY 1/0 BASE REGISTER

FIGURE 27 — LDCR/STCR DATA TRANSFERS

The first word of an STCR or LDCR instruction contains a 4-bit CNT (count) field, which specifies the number of
bits to be transferred. If CNT is O, then 16 bits are transferred. If CNT is in the range 1 to 8, the effective source
operand address from the STCR or LDCR instruction is treated as a byte address; otherwise, it is treated as a word
address.

The LDCR instruction reads a word {(or byte) from the memory and writes all or part of it to the I/O in bit serial
fashion. Beginning with the rightmost bit in the word (or byte) and moving from right to left, each tonsecutive bit
is output through the I/O interface until the specified number of bits has been transferred.

The STCR instruction reads data from the 1/O and transfers it to memory. If the specified number of bits to be
transferred from the 1/O is less than 9, they are stored right-justified in the addressed memory byte, and the
leading bits are cleared to 0. If the operation involves from 9 to 16 bits, the data is stored right-justified in the ad-
dressed memory word, and the leading bits cleared to 0. When the instruction is completed, the bit from the
lowest I/0 address occupies the LSB position in the memory word or byte.

PARALLEL 1/O OPERATIONS

When the MSB (bit 0) of the /O base address in WR12 is 1, the multiple-bit I/O transfer specified by an STCR or
LDCR instruction takes place in a single I/O transfer, i.e., in parallel. Either a word or byte is transferred as deter-
mined by the 4-bit CNT field in the first word of the LDCR or STCR instruction. If the CNT field is within the range
of 9 to 15, then a word is transferred. If the CNT field is within the range 1 to 8, then a byte is transferred. For
parallel I/O, CNT is restricted to (binary} 0010, 0011, 1010, and 1011, The CNT field selects the mode of
transfer as shown below:

if CNT = 0010, then byte transfer

if CNT = 0011, then byte transfer with WR12 auto increment
if CNT 1010, then word transfer

if CNT = 1011, then word transfer with WR12 auto increment.

The automatic increment of WR12 is provided to facilitate block transfers of data to and from devices in the
parallel /O address space.

APPLICABLE BUS STATUS CODES

/0 cycles are identified by the 1/O bus status code (Table 2).

36

5.6

EXTERNAL INSTRUCTIONS

The TMS99000 has five external instructions that allow user-defined off-chip functions to be initiated under pro-
gram control. These instructions are CKON, CKOF, RSET, IDLE and LREX. These names are arbitrary. The user
may define the external function performed by these instructions.

Execution of CKON, CKOF, RSET or LREX causes a bit value of O to be written to one of the I/O addresses
specified in Table 5. Following the single I/O write cycle, execution proceeds to the next instruction. RSET is the
only external instruction that can affect the ST (status) register or the error interrupt status bits. In privileged mode
(ST7 =0), RSET causes ST9-ST15 and the AF, ILLOP, and PRIVOP bits of the error status bits to be cleared. This
is followed by a status update cycle (ST bus status code) to notify external devices of the change in status. In user
mode (ST7 =1}, the ST and error status bits are unaffected, and RSET is similar in effect to CKON, CKOF and
LREX.

TABLE 5 — EXTERNAL INSTRUCTION CODES

INSTRUCTION 1/0 BASE ADDRESS
IDLE 1EC4
RSET 1EC6
CKOF 1ECC
CKON 1ECA
LREX 1ECE

IDLE differs from the other external instructions in that its function is predefined. Execution of IDLE causes the
processor to enter and remain in the idle state until a RESET, NMI or unmasked external interrupt occurs. While in
the idle state, a bit value of O is written repeatedly to /O address >1EC4 li.e., the WE/IOCLK output is pulsed con-
tinually). Upon leaving the idle state, a context switch takes place to service the interrupt. The PC value saved dur-
ing the context switch points to the address of instruction following the IDLE instruction.

The tirning for the I/O write operation, or operations in the case of IDLE, follows that given in Figure 24. Each I/O
write cycle is accompanied by the I/O bus status code (Table 2).

When the processor receives a hold request (HOLD low) while in the idle state, the processor enters the hold state
directly from the idle state. It reenters the idle state as soon as the hold request is deactivated.

PRIVILEGED MODE

For hardwired system protection in a user/supervisor programming environment, certain instructions performing
1/O and control functions are designated as ‘‘privileged’’. When the system is placed in the user or *’non-
privileged’’ mode, any attempt to execute one of these instructions will result in abortion of the instruction and an
interrupt request through the level 2 trap vector. (See Section 4)

The system can be placed in the user mode by setting status bit 7 to 1 by means of an LST or RTWP instruction.
The system is placed in the privileged mode by the occurrence of any interrupt, execution of the XOP instruction,
by the assertion of the NMi or RESET input signals, or during Macrostore operations.

When a privileged opcode violation is detected, error status bit PRIVOP is set, and this, in turn, generates a request
for a level 2 interrupt as described in Section 4.4.3. The following instructions are privileged: CKON, CKOF, IDLE,
LIMI, LREX and RSET. The use of the following instructions is qualified in user mode: LDCR {I/O), RTWP, SBO
(I/0), SBZ (1/0), and LST. In processors with LDD and LDS instructions implemented in Macrostore such as the
TMS991 10, these instructions are privileged. Section 10.5 should be consuited to determine the restrictions
placed on each of these instructions in user mode.

The LDCR instruction is a privileged instruction for byte and word transfers to output addresses falling within the

range specified by Figure 21. Similarly, the SBO, SBZ I/O instructions are privileged for bit 1/0 operations falling
within the same range.

37

7.2

7.21

7.2.2

7.2.3

The LST operation is dependent upon whether the processor is in the privileged or non-privileged mode when the
instruction is executed. While in the privileged mode (ST7 =0}, the LST instruction modifies all 16 bits of the
status register. While in user mode (ST7 = 1), only bits O through 5 and bit 10 of the workspace register specified
in the W field are placed in the status register, and loading these bits has the side effect of clearing ST6. Similarly,
return workspace pointer (RTWP) instruction will cause all bits of the status register to be replaced when in

privileged mode and only the seven bits discussed when in a non-privileged mode.

Section 10.5 discusses the operation of these instructions in more detail.

MACROSTORE INTERFACE AND OPERATION
DESCRIPTION

Macrostore is a special feature of the TMS99000 that permits new instructions to be defined and emulated in a
manner completely transparent to programs residing in main memory. It provides the capability for adding new
functions and enhancing the performance of specific kernels of software, thereby increasing the total system per-
formance. Macrostore permits software kernels to be encapsulated within the TMS99000 system in a manner
that makes them virtually indistinguishable in operation from functions implemented in hardware. This is ac-
complished by providing a 64K byte address space that is logically distinct from the main memory and /O address
spaces. Macrostore functions as a control store for the TMS99000 but is programmed in assembly language
rather than microcode. Internal to the TMS99000 are 1024 bytes of Macrostore ROM (MROM) and 32 bytes of
Macrostore RAM {(MRAM). The access time of the on-chip Macrostore is one machine state. Emulation routines in
the internal Macrostore execute at the full speed of the processor since no wait states are required to access the
on-chip MROM and MRAM. While executing in the Macrostore, certain control capabilities are provided that are
not available to programs executing in the main memory.

THE MACROSTORE INTERFACE

Timing

The timing signals generated during accesses of external Macrostore are identical to the memory timing described
in Sections 3.2.1 and 3.2.2, with the following exceptions. The only bus status codes (Table 2) output are the

AUMS and AUMSL codes. (AUMSL is output if an ABS, TSMB or TCMB instruction is executed in Macrostore.
Otherwise, AUMS is output.)

Another difference between Macrostore accesses versus main memory accesses is the operation of the P—SEE out-
put. In main memory accesses, the PSEL output represents the inverted state of the ST8 bit of the status register
unless a long distance source/long distance destination instruction (LDS, LDD} is in effect (see Section B.3). {The
LDS and LDD instructions apply to the TMS99110 only; see Appendix B.) If a LDS or LDD instruction is in effect
per the description in Appendix B, the PSEL output will represent the logic state of the ST8 bit without inversion. A
complete description of the LDS and LDD instructions is given in Appendix B, Section B.3. For Macrostore ac-
cesses, the PSEL output is not guaranteed; thus it should not be used for paging Macrostore memory.

The AUMS and AUMSL bus status codes differentiate between external Macrostore accesses and memory and I/O
accesses.

Wait States

Accesses of on-chip Macrostore require only a single machine state to complete. If the Macrostore is extended us-
ing an external RAM or ROM that is too slow to respond in a single machine state, external contro! logic must
cause wait-states to be generated by pulling the 99000’s READY input low until the access is ready to complete.
The generation of wait-states is identical to main memory wait state generation described in Section 3.2.5.

Organization
The internal Macrostore consists of 1024 bytes of MROM and 32 bytes of MRAM. The MROM resides at addresses > 0800
to >O0BFE. The MRAM resides at addresses >0000 to >001E and serves as workspace storage during Macrostore

execution. External Macrostore may be added in the form of off-chip ROM or RAM residing at addresses in the range
>1000 to >FFFE. A map of the Macrostore address space appears in Figure 28.

38

000 2
o MRAM bytes
cmaresd 7
LRI, S
| __TTIT
internal < MROM m
- /
//// //////// //
> e ///////
extemal < (off-chip ROM or RAM) En:t::tr::i:on
L FFFE

FIGURE 28— ADDRESS MAP OF MACROSTORE

7.24 Modes of Operation

The TMS99000 operates in one of three modes which determine the operation of Macrostore. These modes are
summarized in Table 6 and in the following paragraphs.

TABLE 6 — MACROSTORE OPERATING MODES

MODE EFFECT ENTRY PROCEDURE
On-chip ROM (1K bytes) and APP pin is a high
RAM (32 bytes) is assumed. level at reset.
Standard External Macrostore memory
expansion from >1000 through
>FFFE.
On-chip ROM address range APP pin is taken
(>0800 ~ >OFFE) is mapped fow when RESET is
Prototyping off-chip for use of external pulled low and
Macrostore memory. On-chip is released when
RAM is available. RESET is released.
All Macrostore memory space APP pin is tied
Baseline is disabled and the attached - to ground.*
processor interface is
disabled.

*If APP is brought high anytime after RESET, the processor will enter the prototyping mode.

39

7.24.1

7.2.4.2

7.2.4.3

7.3

7.3.1

Standard Mode

Ty L P o mARmARA ___ 1 mamvARE

d mode, the on-chip MROM and MRAM are both enabied, permitting the firmware contained in the
MROM to be utilized. During accesses of on-chip MROM and MRAM, the AUMS and AUMSL status codes are out-
put, and the WE/IOCLK and RD outputs both remain inactive high.

While executing in Macrostore, a read or writeto a Macrostore address in the range >1000 to > FFFE results in an access
of external Macrostore. During this access, either the RD or WE/IOCLK output goes active- low, depending on whether
the Macrostore location is being read from or written to. The timing for the access is the same as that described for an
access performed by a program residing in main memory, as described in Section 3.2, with the exception that the only bus
status codes output are AUMS and AUMSL. This is consistent with the treatment of Macrostore execution as a special
type of internal operation. The AUMS and AUMSL bus status codes are used by external decode logic to distinguish
accesses of external Macrostore from accesses of main memoryand /0 locations. Accesses of external Macrostore are, in
turn, distinguished from other kinds of internal operations by observing the RD and WE/IOCLK outputs, which are active
during Macrostore accesses, but not during other types of internal operations.

The TMS99000 is placed in standard mode by keeping the APP input high while RESET is pulled low at system initializa-
tion.

Prototyping Mode

In prototyping mode, the TMS99000’s internal MROM is disabled, but the MRAM remains enabled. A read or write to a
Macrostore address in the range > 0000 to >001E results in an access of the on-chip MRAM, but a read from or write to
any Macrostore address in the range >0800 to > FFFE results in an external Macrostore access. As in the standard mode,
the WE/IOCLK and RD outputs are active only when the Macrostore read or write is off-chip. The AUMS and AUMSL bus
status codes are output during accesses of both internal and external Macrostore.

The processor is placed in prototyping mode by pulling the RESET and APP inputs low together during system initializa-
tion and releasing them at the same time. In systems without attached processors, the RESET and APP pins can simply be
tied together.

One use of prototyping mode is to permit external RAM or ROM occupying Macrostore addresses > 0800 to >0BFE to
emulate on-chip MROM during development and testing of Macrostore software.

Baseline Mode

In baseline mode all Macrostore memory space is disabled. In the event a MID opcode is encountered, the
TMS99000 will cause a level 2 interrupt to occur and the ILLOP bit of the error status register (Section 4.4) will be
set. The level 2 interrupt routine then may emulate the opcode or the opcode may be handled as an illegal opcode
violation. In baseline mode the attached processor interface is also disabled. Thus the APP input pin will not be
tested on the occurrence of a MID opcode. The level 2 interrupt will be implemented immediately.

The TMS99000 is placed in baseline mode by pulling the APP input low at reset. It remains in baseline mode as
long as AAP remains low. Typically, this is accomplished simply by tying APP to ground. (Note that if APP goes
high after RESET, the processor will enter the prototyping mode.)

MACROSTORE CAPABILITIES

Entry Procedure

When the TMS99000 is executing a program residing in main memory and a MID opcode is encountered, the APP
pin is tested to determine whether an attached processor is prepared to respond to the MID opcode. If not, pro-
gram control is transferred to the Macrostore. A MID opcode is an undefined opcode in the basic TMS99000 in-
struction set, or an XOP executed while ST11=1.

The Macrostore is entered via an entry point table occupying the first ten words of the MROM, shown in Table 7. Each
entry in the table contains the start address in MROM of an emulation routine for a particular group of MID opcodes. When
a MID opcode is encountered in the program in main memory, instruction execution transfers to the MROM address in the
entry-point table corresponding to that opcode. Undefined single-word opcodes are divided into eight groups with the
entry addresses for each group as indicated in Table 7. Undefined two-word opcodes are treated as a 8th group, and XOPs,
when ST11 = 1, asa 10th.

40

TABLE 7 — MACROSTORE ENTRY VECTORS

TABLE mipt
LOCATION OPCODES
0800* 0000-001B, 001E-0028, 002B-007F, 00A0-O0AF, 00CO-O0FF
0802* 0100-013F
0804* 0210-021F, 0230-023F, 0250-025F, 0270-027F, 0290-029F, 02B0-02BF, 02D0-02DF, 02E1-02FF
0806* 0301-031F, 0320-033F, 0341-035F, 0361-037F, 0381-039F, 03A1-03BF, OEC1-03DF, 03E1-03FF
080A* 0C00-0C08, 0COC-OCFF
080A* ODOO-ODFF
080C* OEQO-OEFF
O80E* OFOO-OFFF, 0780-07FF
0810 AM, SM, SRAM, SLAM, TMB, TCMB, TSMB
(if the second word is illegal)
0812 XOP (if ST11=1)

*Bits 5, 6 and 7 of the MID Opcode select one of eight entry-table locations.

TThe opcodes reserved for

the LDD and LDS instructions should not be used as MID opcodes.

A context switch occurs after the entry-point address has been read from the table. The workspace pointer is set to 0000
and the program counter is set to the address from the entry-point table. The old WP, PC, and status are saved in the
MRAM locations corresponding to WR13, WR14 and WR15, respectively. The PC value saved in WR14 always points to
the word immediately following the MID opcode. If a two-word MID opcode was encountered, the PC value always points
to the word immediately following the first word of the two-word opcode.

Prior to transferring program control to the Macrostore emulation software, the MID opcode responsible for causing the
MID trap is automatically placed in registers 3 and 5 of the Macrostore workspace. If the first word of an instruction causes
the MID trap, the (entire) first word is placed in WR. If the second word of an instruction causes the MID trap, the (entire)
second word of the instruction is placed in WRS, and bits 10, 11, 14, and 15 of the first word of the instruction
are placed into bits 10, 11, 14, and 15 of WR3. In the latter case, bits 10, 11, 14, and 15 are sufficient to uni-
quely identify the possible first word of an opcode in which the second word is illegal. The identification is per-
formed as follows: Table 8 enumerates all the 2-word opcodes in the TMS99000 instruction set. These instruc-
tions are divided into 3 groups. Bits 10 and 11 identify the group. Each group contains 2 or 3 opcodes. Bits 14
and 15 serve to identify the individual opcodes within each group.

WR3 IN MACROSTORE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

| bFLAGs [0 o 0 o o0 o0 o0 [GRoUP | 0 0 | OPF |
LONG-DISTANCE BITS 10, 11, 12 & 15
FLAGS ENCODE FIRST WORD

OF TWO-WORD OPCODE

Bits 0, 1 and 2 of WR3 are initialized to the value of the 99110's long-distance flags upon entry to Macrostore. These flags
indicate whether an LDS or LDD instruction is currently in effect, as explained in Section 10.

4“1

TABLE 8—INSTRUCTIONS WITH TWO-WORD OPCODES

MNEMONIC FIRST INSTRUCTION WORD
Group 1: T™MB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1
TCMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0
TSMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1
Group 2: AM 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
SM 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
Group 3: SLAM 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
SRAM 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

Bits 10 and 11 identify group

Bits 14 and 15 identify opcode within group

73.2

733

7.3.3.1

Exit Procedure

Macrostore is generally exited by executing a RTWP instruction (opcode >0380). Interrupts are sampled prior to
executing the next instruction. In those instances where interrupts (maskable or non-maskable) should not be
sampled before executing the next instruction, the exit from Macrostore is invoked using the opcode >0384, a
special form of the RTWP instruction. In either case, the WP, PC, and ST registers are updated with WR13, WR14,
and WR15 from the MRAM. The > 0384 exit ties the Macrostore operation to the execution of the instruction
that follows the MID instruction. For example, it is used in emulating the LDD and LDS instructions, described in
Section 10.

If the Macrostore is entered upon detection of a MID opcode, and the emulation software in Macrostore deter-
mines that it does not recognize the MID opcode as valid, the software must transfer control to the level-2 inter-
rupt service routine, which has the responsibility for dealing with illegal opcodes. The emulation software in
Macrostore uses the opcode >0382, another special form of the RTWP instruction, to exit the Macrostore under
these conditions. When this opcode is executed in Macrostore, the processor sets the ILLOP flag of the error
status bits {Section 4.4) before executing the RTWP operation. Consequently, following the context switch back
to the program in main memory that contains the undefined opcode, the ILLOP flag forces a trap to the level-2 in-
terrupt service routine. The ILLOP interrupt is non-maskable and cannot be disabled by the interrupt mask in ST12-
ST15.

The opcodes >0380, >0382 and > 0384 provide the only means for performing an exit from Macrostore. To
perform an RTWP in Macrostore (i.e., inverse of a BLWP) the opcode >0381 should be used. This opcode will
allow for return branching in the Macrostore address space without exiting Macrostore.

Macrostore Execution

During Macrostore execution, several processor functions are modified to provide increased control. These are described
below.

Status Register

The contents of the status register are not affected by the context switch to Macrostore that follows detection of a MID
opcode. Macrostore routines are ‘‘super-privileged,’’ meaning that they can alter the contents of the status register and
perform other privileged operations regardless of the value of the privileged mode flag, ST7. An ST bus status code (Table
2) is output from the processor when a Macrostore routine alters the ST register by means of the LST instruction. When
the status register of the original main memory program environment must be modified, the appropriate bits of WR15 must
be modified prior to Macrostore exit.

During emulation of an MID opcode in Macrostore, the emulation routine can modify the ST register value saved in WR15
in accordance with the results. During the context switch that follows the exit from Macrostore, the new status is loaded
into the ST register. If the status value saved in WR15 has not been changed since the entry to Macrostore, it will be
restored in its original form.

While in Macrostore, the setting of both ST4and ST10to 1 does not cause the AF flag of the error status register to be
setto 1. If anarithmetic fault interrupt is to be generated, then bit 4 and 10 of WR15 should be set so that an arithmetic
fault trap will occur when the context switch out of Macrostore is made.

42

If it is required to modify the status bits of the main memory routine’s status register prior to context switching out
of Macrostore, the appropriate bits of WR15 should be modified. (Note if ST7 =1, then status bits 6 to 15 will be
set according to Section 6.)

7.3.3.2 Interrupts
All interrupts except RESET are inhibited while executing from Macrostore. However, pending interrupts can be
detected using the conditional jumps described in Section 7.2.7.5.
7.3.3.3 Macrostore Workspace Registers
When Macrostoreisinitially entered, the Workspace Pointer is set to zero so that the internal Macrostore RAM is utilized as
the workspace. The Workspace Pointer may be set to another value by the LWP, LWPI, or BLWP instruction when it is
desired that the workspace be located in external Macrostore RAM.
The workspace registers located in internal RAM have special uses associated with the evaluate address (EVAD)
instruction described in Section 7.3.3.5. For this reason care must be exercised in assuring that the EVAD instruc-
tion is used only with the Workspace Pointer equal to zero.
Table 9 lists the dedicated functions of the workspace registers when the workspace pointer bits 11 to 15 are
equal to zero as is the case when Macrostore is first entered. Table 10 lists the bus status codes of the workspace
registers when the workspace pointer bits 11 to 15 are not equal to zero {i.e., external RAM is used).
TABLE 9 — DEDICATED MRAM REGISTER FUNCTIONS
[WP bits 11 to 15 are all zero]
MAIN BUS MOD MOD
MEMORY STATUS BY BY
REGISTER ACCESS CODE EVAD MACRO USAGE
0 NO AUMS shift counts
1 NO AUMS
2 YES IAC
first word of 2-word opcode; *
YES GM YES LDD and LDS internal flags
NO AUMS scratch register for EVAD *
one-word opcode or second *
NO AUMS YES word of two-word opcode
YES SOP
DOP Tdnot0 EVAD *
7 YES ws YES Td=0 destination
address
SOP Tsnot0 EVAD *
8 YES WS YES Ts =0 source
address
EVAD address of external *
9 YES ws YES dest. register if *R +
EVAD address of external *
A YES WS YES source register if *R +
B NO AUMS BL and XOP
C YES DopP CRU base address
D YES WS YES old WP
E YES ioP YES old PC
F NO AUMS YES old ST

*EVAD should only be used if the WP =0000.

a3

7.3.34

TABLE 10 — BUS STATUS CODE ASSOCIATED WITH WP VALUE
[WP bits 11 to 15 not equal to zero]

REGISTER MAIN BUS
ADDRESS MEMORY STATUS
BITS 11 70 15 ACCESS CODE
0 NO AUMS
2 NO AUMS
4 YES 1AQ
6 YES GM
8 NO AUMS
A NO AUMS
C YES SOP
E YES DOP
WS
10 YES SoP
WS
12 YES WS
14 YES WS
16 NO AUMS
18 YES DOP
1A YES WS
1C YES opP
1E NO AUMS
Accessing Main Memory

During Macrostore execution, data in the main memory is accessed using the indirect autoincrement and indexed
addressing modes (*R, *R + and @TABLE(R)). MRAM workspace registers 2, 3, 6, 7, 8, 9, 10, 12, 13 and 14 are used as
base registers during these accesses. This is only true when the Workspace Pointer resides on a 32-byte boundary, i.e., five
LSB’s = 0. When a routine residing in Macrostore accesses the main memory through one of these registers, the access is
accompanied by a bus status code indicating a particular type of memory cycle, and MEM is held active-low. The bus
status code corresponding to the use of each register is indicated in Table 9 for the case when WP = > 0000. When the WP
does not equal zero, the type of bus cycle and corresponding bus status code is determined by the least-significant
addresses of the workspace register as shown in Table 10. For simpilicity, it is recommended that the Workspace Pointer
point to a 32-byte boundary to avoid confusion as to the type of bus cycle that will occur when the register is used as base
register for memory transfers. Each main memory access should utilize a base register whose use is accompanied by the
bus status code appropriate to the type of access being performed.

As shown in Table 9, WRs 7 and 8 are a special case in regard to the bus status code output during a main memory access.
The default bus status code output by the processor is DOP (Table 2} when WR7 is used to access main memory; the
default for WR8is SOP. If an EVAD operation (to be described) is performed on an opcode whose Td field is 0 {(workspace
register direct addressing), the bus status code associated with WR7 is changed from its default of DOP to WS. Similarly, if
an EVAD operation is performed on an opcode whose Ts field is 0, the bus status code for WR8 is changed from SOP to
WS. If an EVAD subsequently is performed on an instruction with non-zero Td, the default of DOP is restored to WR7,
and a non-zero Ts restores SOP to WR8. Everytime Macrostore is entered, the default status codes are restored.

Two examples illustrate the main memory access capability. The convention is to refer to the program in main memory that
contains the MID opcode as the “user’s’’ program. Assume that WR 13 in MRAM contains the user’s Workspace Pointer.
To read the contents of WR4 in the user’s workspace into WR1 in MRAM, the instruction MOV @8(R13), R1 is
executed from Macrostore. A WS bus status code is output during this operation (MEM = O, BST = 110).
Second, assume that WR14 in MRAM contains the user’s PC value. To read immediate data or a symbolic address
{following a MID opcode in the user’s program) into WR14 in MRAM, the instruction MOV *R14 +,R1 is ex-
ecuted. This also causes the user’s PC value in WR14 to be incremented by two, and an IOP bus status code is
output (MEM = 0, BST = 010).

44

7.3.3.5

Using register O, 1, 4, 5, 11 or 15 as base register for indirect autoincrement or indexed addressing results, in an
access of Macrostore. During Macrostore accesses, the AUMS and AUMSL bus status codes are output to
distinguish them from accesses of the main memory.

While executing in Macrostore, all symbolic addresses refer to locations within Macrostore. A 1/0 access using the base
address in Macrostore register WR12 is accompanied by the 1/0 bus status code.

Evaluate Address Instruction— EVAD

An EVAD instruction during Macrostore execution permits convenient calculation of effective source and destination
addresses for MID opcodes. EVAD assumes that the MID opcode contains a six-bit source operand field, and a six-bit
destination operand field, i.e., the dual-operand format described in Section 10.5.1. The address calculations are based
upon the original WP of the user, saved in WR13in MRAM. Note that the EVAD instruction assumes that the WP is equal
to zero as initialized upon entry into Macrostore. If the WP is modified to point to external MRAM, the WP must be
restored to zero prior to EVAD execution. If the contents of a register in the user’s workspace are fetched as part of the
address calculation, a WS bus status code is output by the processor while the external access takes place. The saved PC
(in WR14) is incremented appropriately if symbolic or indexed addressing is used. The contents of any workspace register
in MRAM except WRO can be evaluated using EVAD. When EVAD is executed, the calculated effective source address is
piaced in WR8 in MRAM, and the calculated destination address in WR7?. if the source or destination field specifies
autoincrement mode, the address of the user’s register is placed in WR9 or WR10, respectively. Execution of EVAD alters
the contents of WR4, which EVAD uses as a scratch register. A summary of the EVAD instruction, including its effect on
status bits 0 and 2, is presented in Table 11.

Instruction 0 9 0 11 12 15
Format [0000 0001 00 Ts | S]
For EVAD: opcode mode register

The Ts and S fields above are used to determine the effective source address of the target word of the EVAD in-
struction. Once the target word is fetched as the source operand, the Ts, S, Td and D fields from that word are ex-
tracted and utilized as indicated below.

TABLE 11 — EVALUATE ADDRESS INSTRUCTION

STATUS
BITS DESCRIPTION
AFFECTED
DA - WR7
SA —~ WRS8
If target Ts = {symbolic or indexed)
WR14+2 - WR14
If target Td = 2 (symbolic or indexed)
WR14 +2 - WR14
0—+ST2 If target Ts not 3
1—=8STO If target Td not 3
1-+8T2 If target Ts = 3 (autoincrement):
address of external register ~ WR10
0 - STO If target Td = 3 (autoincrement):
address of external register -~ WR9

The processor's WP register must be set to > 0000 before executing the EVAD instruction. Otherwise, the results are
unpredictable.

If only the source field of an MID opcode is to be evaluated, the Td field (bits 4 and 5) should be cleared to prevent
unnecessary external accesses or unintentional modification of WR13 (generally the user's PC). For example, if
the MID opcode resides in WR5 and bits 4 and 5 are not zero in MRAM, the instruction sequence

45

ANDI R5, >F3FF
EVAD R5
is executed while in Macrostore to calculate the effective source address. The destination field, which is all zeros, is
interpreted as register direct addressing mode {and STO is set to one). In order to deal with the case where the source field
specifies autoincrement mode (ST2 = 1), the instructions above are followed by
JEQ $ +4
INCT *R10
The second instruction increments the user’s base register by two, assuming the source operand is one word in length. If
the operand occupies a byte or double-word instead, the base register should be incremented by one or four, respec-
tively.*

When developing an effective address based upon one of the user’s workspace registers (in main memory), the EVAD
instruction uses the contents of Macrostore register WR13. When developing an operand address based upon the user’s
program counter, the EVAD instruction uses the contents of Macrostore WR14. Note that WR 14 is incremented by two for
each symbolic or indexed addressing mode utilized.

7.3.3.6 Jump on Interrupt Status

The TB (test bit), SBO {set bit to one) and SBZ {set bit to zero) instructions are not available during Macrostore execution.
In place of these operations and using the same opcodes are conditional jump instructions that detect pending interrupts.
A “pending’’ interrupt is defined as an interrupt that has been requested by activating the processor’s NMI, or by asserting
a request for an external interrupt that is not disabled by the interrupt mask in ST12-ST15. The instructions described in
Table 12 allow interrupts to be tested at interruptible points in Macrostore routines. With this capability, instructions
requiring long execution times can be emulated in a way that permits them to be interrupted and resumed after interrupt
servicing.

The “jump if interrupt present'’ can be used to test for the occurrence of an interrupt.

The “’jump not equal and no interrupt present’’ is useful in testing for interrupts while in loops. This single instruc-
tion may be used to exit a loop either on the condition that the loop count is zero or the interrupt is present.

EXAMPLE: LOOP "MOV *R1+,*R2+
DEC R3 R3HAS LOOP COUNT
SBZ LOOP DONE?
JNE OUT JUMP TO OUT IF NO INTERRUPT
L]
L]
ouT ¢

These jump instructions have a displacement range of — 128to + 127 words from the memory-word address following the
jump instruction. The displacement is specified in the odd byte of each instruction. No status bits are affected by execution
of a jump instruction.

The SBO and SBZ opcodes are executed in Macrostore as conditional jump instructions. SBO is equivalent to “jump if an
interrupt is pending,” and SBZ is equivalent to “jump if an interrupt is pending and ST2 is zero.” The TB opcode is
undefined in Macrostore. These instructions are summarized in Table 12.

TABLE 12—-JUMP ON PENDING INTERRUPT

MNEMONIC OPCODE MEANING
SBO 1DXX Jump if unmasked interrupt is present
S8z 1EXX Jump if equal bit is not set and unmasked interrupt is not
present
T8 1FXX Undefined

* The incrementing of workspace registers in the main memory is not performed by the EVAD Instruction but is the responsibility of the Macrostore software.
Care may therefore be required to deal with the instance where the target word of an EVAD operation contains source and destination fields that specify in-
direct autoincrement using the same workspace register n (i.e., *Rn+, *Rn +). Otherwise, both the source and destination operands (pointed to by register
n} will be read from the same address rather than from successive addresses.

tWhen using SBZ to check for exiting a loop, a JNE or JEQ instruction should follow (outside the loop) to determine the reason the loop was exited; SBO should not be
used for this purpose when an interrupt is applied and then removed.

46

734

735

7.3.6

Subroutine Branch and Return

While executing in Macrostore, the BLWP instruction can be used to transfer program control to a subroutine located
within Macrostore. For this purpose the opcode >0381 should be used. This version of the RTWP opcode should be
distinguished from the RTWP variants >0380, >0382and >0384, discussed in Section 7.2.6, all three of which cause an
exit from Macrostore.

MID Opcodes in Interrupt Routines

One restriction exists regarding the use of MID opcodes within interrupt service routines. An MID opcode encountered in
the interrupt routine for an NMI or level-1 interrupt, or for a Reset routine that does not cause complete system reinitializa-
tion, must not resultin an exit from Macrostore by means of opcode >0382, the special form of RTWP that causes a level-2
trap. The reason is that the level-2 routine can be interrupted by an NMI, level-1 interrupt or Reset, possibly destroying the
return linkage established previously. In general, this restriction can be interpreted to mean that a MID opcode in the
service routine of an interrupt of higher priority than level 2 must either be recognized by an attached processor or defined
by an emulation routine in Macrostore.

Testing for External Macrostore

The on-chip Macrostore software can use the following technique to allow the user to optionally expand the Macrostore
functions by adding new routines residing in off-chip RAM or ROM. The TMS99110 uses this technique to check for
populated off-chip Macrostore memory.

When the emulation software in the 99110’s on-chip MROM determines that it cannot execute a particular MID opcode, it
then checks to determine whether the system contains external Macrostore (off-chip RAM or ROM). If so, the Macrostore
program branches to location >1002, the entry point of the emulation software in the external Macrostore. Otherwise, a
level-2 interrupt is requested, as described in Section 7.2.4.1.

The check to determine whether the system contains external Macrostore works as follows. In a system having external
Macrostare, the code >AAAA (alternative ones and zeros) must be stored at Macrostore address >1000, which is the first
location in the off-chip region of Macrostore. The internal Macrostore emulation software upon deciding to test for
external Macrostore, reads the contents of address >1000. if this location contains the code >AAAA, this confirms that
the external Macrostore is present.

ATTACHED PROCESSOR (AP) INTERFACE

The TMS93000’s basic instruction set can be extended by defining new instructions. The extended instruction set is
supported either by emulation software contained in external Macrostore, or by external hardware utilizing the
TMS99000’s attached processor (AP) interface. The TMS99000’s AP interface provides complete software transparency
between these two methods. System support for extended instructions can be conveniently upgraded from Macrostore
emulation routines to attached processors without affecting the user’s software base.

An AP in a TMS39000 system attaches to the local bus of the microprocessor. While the processor is actively executing
instructions, the AP passively monitors the bus to detect opcode fetches. The TMS99000 outputs an IAQ ({instruction
acquisition) bus status code to notify the AP each time an opcode fetch cycle occurs, and the AP latches the opcode from
the bus to examine it. When the TMS39000 fetches an opcode which it does not recognize, but which the AP is prepared to
execute, the TMS99000 transfers control of the local bus to the AP. After the AP completes execution of the instruction, it
returns control to the processor.

The signals utilized by the AP interface of the TMS99000 are shown in Figure 29. The transfer of control from the
TMS99000 to an AP and the eventual return of control to the TMS99000 takes place chiefly through the following three
signals:

« APP (attached processor present) input

« MID (macro-instruction detected) bus status code

+ HOLDA (hold acknowledge} bus status code

41

ME

ADDRESS/DATA (0-15)

ALATCH

WE/CRUCLK

TMS99000 RD

READY

INRREVS!

R/W

y

APP

BST (1-3)

1

r v vy N %

ATTACHED
PROCESSOR

FIGURE 29— ATTACHED PROCESSOR INTERFACE

System memory, shared by the TMS99000 and the AP, is used to transfer context information from one to the other. The
TMS99000's workspace registers, which reside in memory, are readily available to the AP while the AP remains in control

of the local bus.

The timing for the AP interface is shown in Figures 30A and 30B. When the TMS99000 fetches an opcode it does not
recognize, it outputs an MID bus status code to notify APs, should they be present, that it is prepared to relinquish system
control. An opcode that causes this to occur will be referred to as an MID opcode. A list of MID opcodes is presented in

MEMORY
SYSTEM

Section 10.5.17. If bit 11 of the status register is set to 1, an XOP will also be treated as an MI!D opcode.

48

ckout /" _/\/ /TS S \UIN
® | I | 6)

ALATCH ~m-/—\m=w/ l'!i-? ¥=‘=/‘—\—

BST(1:3) TYTTAG YT YAUMSY MID X~ 7t X
[[I
o d

MEM O\ 7 —r NN
READY ' N/

ApP T \IANUNNIURRRRRNNRRNERY =~~~
RAW "\ ©®N— . _

1 INSTR | LAST | HOLD STATE | AP CYCLES:

DETERMINE | FETCHNEW

| I
| FETCH | STATE | | IFATTACHED | WP;STORE | I ALL CONTROL
I oF | OF 1 | PROCESSOR | owbpc,wp | | LINES ARE
I MID 1PRIORI | ISPRESENT | ANDST | | DRIVEN BY
loP- |INSTR I | | I | ATTACHED
| CODE | | I] i | PROCESSOR
[| | | ! | !

NOTES:

(1)} This bus status is determined by the prior instruction.

{2) Processor will remain in this state until READY goes high.

(3) BST = ST when the new status is output
= INTA when the new WP is fetched
= WP when the new WP is output
= WS while the old WP, PC, and ST are stored

{For simplicity, AUMS bus status codes are not shown.)

{4} The processors tristates all signals except ALATCH as follows:
o BST1-BST3are first driven high to indicate hold acknowledge. and then are tristated.
o MEM, RD and WE are first driven high and then tristated.
» The address-data bus is tristated “‘as is"".

(5} The processor first drives its ALATCH output high and then tristates it.

(6) The CLKOUT remains the system clock throughout.

FIGURE 30—AP INTERFACE TIMING
(A) Transferring Control to Attached Processor

49

cwour /M /M

aaten /NN~ M\ M\

2]

BsTa Y7 - bz v~ W X ST X Aa X W X
I
MEM Y7 —hz N\ ___~_ [/ _/ <

HOLD J (4)

APP V4

PROCESSOR | ouT- | FETCH | ouT- | RESUME
LeAvEs HOLD ! put | NExT ! PuT | NORMAL
AND FETCHES | New | INSTR ! NEW | EXECUTION

Last | APP
STATE | RELEASED;
oFAP | APAND MAIN

|
con- | cpuBOTH UPDATED | sT I we
TROL | INHOLD WP, PC,ST | I | I
| I I I f
| I I I I
NOTES:
(1) The AP tristates all signals except ALATCH as follows:
. BST 1- BST 3 are f first driven active high and then are tristated.
° MEM RD and WE are first driven high and then are tristated.
o The address-data lines are tristated.
{2) The AP drives its ALATCH high and then tristates it.
(3) BST = WS during WP, PC and ST fetches.
{4) An AP that fetches i for chained operations will assert HOLD and release APP during the instruction fetch to aliow APP to be used for a breakpoint

request.

FIGURE 30 — AP INTERFACE TIMING
(B) Regaining Control From Attached Processor

Assuming thatan AP is (1) present and is (2) prepared to execute the MID opcode, it responds to the MID bus status code
by pulling the APP line low to signify its readiness. Upon detecting the APP signal, the processor prepares to transfer
control to the AP. This involves clearing status bit 8 and performing a context change. With the PSEL output signal high,
the processor fetches the new WP value from the trap vector for the level 2 interrupt. (The PC value from the vector is not
fetched.) The old WP, PC and ST values are saved in WRs 13, 14 and 15 of the new workspace. The saved PC points to the
word following the MID opcode. After completing these actions, the processor begins a hold cycle, forces its outputs to
the high-impedance state, and asserts HOLDA. This is the processor’s signai that it is ready for the AP to assume control of
the local bus.

Since the 99000 uses the same HOLDA bus status code to respond to both DMA devices and APs, each AP must monitor
the HOLD line to distinguish a HOLDA in response to APP from a HOLDA in response to HOLD.

After taking control of the local bus, the AP begins executing the operation specified by the MID opcode. If a multiple-
word instruction format is specified, the PC value saved in WR 14 is used by the AP to access immediate data and operand
address information. The contents of the original workspace are accessed through the WP value saved in WR13. The ST
value in WR15 is altered to reflect the results of the operation performed.

The 99000 continually samples its APP and HOLD inputs during the hold cycle. When the AP completes its operation and
releases APP, the processor responds by terminating the hold cycle. The processor loads PC, WP and ST registers with the
values in WRs 13, 14 and 15, and resumes execution.

If an MID opcode is detected and APP remains high, indicating that no AP is prepared to execute the instruction, the
processor performs a context switch that transfers control to the instruction emulation software contained in its Macros-
tore (Section 7).

The APP mput performs a second function apart from its use in transferrmg control to an AP. An external device
can use APP to force the processor to enter a hold cycle by assertlng APP during the instruction acquisition {IAQ)
cycle. The mechanism works as follows. The processor samples APP at the end of every opcode fetch, at the
same point that it latches the opcode. The processor fetches the WP value from the level 2 trap vector and saves
the old WP, PC, and ST values in WRs 13, 14, and 15 of the new workspace. The PC value saved in WR14 points
to the memory word containing the opcode that was just fetched (and discarded). Fol-owmg the context switch,
the processor outputs the HOLDA bus status code, enters the hold state, and waits for APP to be released, as
before.

The APP signal can be used by a maintenance panel to force the processor to enter hold. Using the mechanism described
above, the maintenance panel can trigger APP on either a selected address or asele selected opcode to cause a breakpoint. To
avoid possible interference with APs, the maintenance panel should not assert APP during an MID bus status code if it was
not active at 1AQ. If the ““panel option” is used with APP an attached processor should not assert APP until it has
recognized a MID bus status code.

The processor acknowledges an unmasked interrupt upon completing execution of the instruction during which the
interrupt becomes active. If the processor must respond to an interrupt before it can begin execution of a prefetched
opcode,* the opcode is discarded prior to trapping to the interrupt service routine. Upon return from the interrupt, the
opcode previously discarded is again fetched from memory. A special case of this procedure occurs when the discarded
opcode is an MID opcode that an AP is preparing to execute. The AP must discard the opcode also. The AP knows to
discard the opcode if the processor, following its fetch of the MID opcode, outputs the INTA bus status code.
Alternatively to checking for the INTA bus status code, the AP can check for a subsequent IAQ bus status code in-
dicating that the instruction has been discarded. This means that the processor has discarded the opcode in order
to service the pending interrupt.

APs must monitor HOLD to detect DMA requests as discussed above. In a processor system containing one or more APs,
the TMS39000 HOLDA signal is not distributed directly to DMA devices but is gated with the hold acknowledge signals
from the APs to form a composite hold acknowledge signal that is passed on to the DMA devices. This composite hold
acknowledge signal, which signifies transfer of control to the DMA device, is generated only after the processor and all
APs have entered the hold state.

When an X (execute) instruction is executed, an IAQ bus status code is NOT output during the fetch of the target opcode
located at the effective source address of the X instruction. Instead, an SOP or WS bus status code is output, depending
on the addressing mode used. This means that APs cannot rely upon the IAQ bus status code to notify them when the
processor fetches a MID opcode that is the target opcode of an X instruction.

The AP interface can be disabled by tying APP to ground. When operating in this mode, the processor automatically
generates an ILLOP interrupt request upon encountering an MID opcode, bypassing the AP interface and Macrostore.

*The processor rautinely prefetches the next opcode one state prior to completion of the current instruction (Section 10.6.2).

51

9.

PIN DESCRIPTION

Table 13 defines the TMS99105A/TMS99110A pin assignments and describes the functions of each pin.

Figure 31 illustrates the TMS99105A/TMS991 10A pin assignment information.

WE/IOCLK

3l

k)
m
(1]
m
-

|

b
3
minininlnln

I
(o}
-
O

n

> <
O wn
<

z
2| 3

2 3 28
mininin

R/W E
Vee L

A0/DO/IN :

1 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
° Tmssoiion 32
10 31
1 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

] xTAL1/CLKIN

j XTAL2

] cLkour

] ve

] ALatcH

] PsEL/D15/0UT
] A1e/D14

j A13/D13

] a12/p12
] a1/om
] a0/p10
] A9/p9
] As/ps
] a7/07
] A6/D6
] As/Ds

FIGURE 31 — PIN ASSIGNMENTS

52

TABLE 13—PIN DESCRIPTION

siGNATURE PN | 10 | DESCRIPTION
POWER SUPPLIES

Vee 5 Supply voitage: + 5V nominai.

Vss 6, 33 Ground reference.

CLOCKS

XTAL1/CLKIN 36 IN | Crystalinput pin for internal oscillator; also input pin for external oscillator.

XTAL2 35 IN | Crystalinput pin forinternal oscillator.

CLKOUT 34 OUT | Clock output signal. The frequency of CLKOUT is % the frequency of the crystal oscillator.

ADDRESS/DATA BUS
A0/DO/IN 16 1/0 | While ALATCH = 1, these lines function as an address bus consisting of output signais A0-A14 and PSEL.
{addr/data MSB) During memory, 1/0 and Macrostore accesses, an address is output on A0-A14. During memory cycles,

A1/D1 17 1/0 | statusbit8is outputin complemented form on PSEL; PSEL is forced high during I/0 accesses. During WP

A2/D2 18 1/0 | and ST bus cycles (Table 2), status information is output on the address bus.

A3/D3 19 1/0 | While ALATCH =0, these lines function as a bidirectional data bus for memory, 1/0 and Macrostore

A4/D4 20 1/0 | accesses. During a bit-parallel byte or word read operation, {RD active low), data is input on DO-D15.

A5/D5 21 170 | During a bit-paraliel write operation (WE/IOCLK active low), data is output on DO-D15. For bit-serial /0

A6/D6 2 1/0 | operations, read data is input on IN, and write data is output on OUT.

A7/D7 23 1/0 | These lines are forced to the high-impedance state during a hold cycle.

A8/D8 24 1/0

A9/D9 2% 1/0

A10/D10 26 1/0

A11/01 27 110

A12/D12 28 110

A13/D13 2 1/0

A14/D14 {addr LSB) | 30 1/0

PSEL/DIS/OUT | 31 | 1O

LOCAL BUS CONTROL SIGNALS

ALATCH 32 | ouT | Addresslatch. While ALATCH is high, the multiplexed address-data lines function as an address bus; while
ALATCH is low, they function as a data bus. Each bus cycle (memory, /0 or internal) begins with a
positive ALATCH pulse, the falling edge of which is used by external logic to latch the contents of the
address bus. The MEM and BST1-BST3 outputs are stable while ALATCH is low.

Prior to entering hold, the HOLDA bus status code is output and the ALATCH signal undergoes one final
high-to-low transition before being driven to the high-impedance state. This permits an external device to
latch the HOLDA code.

MEM 40 | ouT | Memorycycle. When low, MEM indicates thata memory cycle is in progress. When high, MEM indicates
thatal/0 orinternal cycle is in progress. MEM is forced to the high-impedance state during a hold cycle; an
internal resistive pull-up maintains a high level.

WE/IOCLK 1 | OUT| write enable and inverted I/O clock. When low, WE/IOCLK indicates that write data is present on
the data bus. WE/IOCLK is active during memory writes (MEM =0), serial /O writes (MEM =1,
BST2=1, A0O=0), parallel /O writes (MEM=1, BST2=1, AO=1), and writes to external
Macrostore (MEM =1, BST2 =0). WE/IOCLK is a tri-state output signal, and is forced to the high-
impedance state during a hold state; an internal resistive pull-up maintains. a high level.

AD 2 oUT | Read Enable. When active low, RD indicates that a read (memory, parallel 1/0, serial 1/0 or external
Macrostore) is taking place on the bus, and that external devices may enable their tristate drivers to gate
data onto the address-data lines. RD is a tristate signal and is forced to the high-impedance state during a
hold state; an internal resistive pull-up maintains a high level.

R/W 14 | ouT | READ/WRITE. The R/W is valid at the beginning of each new cycle. This signal is high during read
operation and low during write operations and internal ALU cycles. When R/W s low, it indicates that the
99000 will be driving the data bus. When R/Wis high, it indicates that the 99000 will tristate the data bus

| (AD bus during the data time).

TABLE 13—PIN DESCRIPTION (CONTINUED)

SIGNATURE

[em]| vo]

DESCRIPTION

LOCAL BUS CONTROL SIGNALS {CONCLUDED)

READY

IN

Ready. When high, READY indicates that the current bus cycle (memory, /0 or internal) is ready to be
completed. As long as READY remains low to indicate a not ready condition, the bus cycle continues to be
extended with wait states. Near the end of each wait state, READY is sampled to determine whether the
bus cycle can complete or another wait state is to be generated. Note that this READY function differs
from some READY functions in that bus cycles of non-memory cycles are affected by its operation.

INTERRUPTS

INTREQ

ICO (MSB)
Ic1

Ic2
IC3(LSB)
NMi

RESET

10
1
12
13

Interrupt request. When active low, INTREQ indicates that an external interrupt is requested. If INTREQis
active, the processor latches the contents of the interrupt code inputs 1C0-IC3 into its internal interrupt
code register. The code is compared with the interrupt mask in status register bits 12-15. If the code is less
than or equal to the mask value, the interrupt is granted; otherwise, the request is ignored. 1C0-IC3
continue to be sampled as long as INTREQ remains low. If the request is initially disabled by the mask,
INTREQ may be held low until the mask changes to a value that enables the request.

Interrupt code. ICOis the MSB of the 4-bit interrupt code. IC0-IC3 are sampled when INTREQ s active low.
The highest-priority interrupt level is signified by IC0-IC3 = LLLL; the lowest level is HHHH.

Non-maskable interrupt. When active low, NMI causes the processor to perform a non-maskable interrupt
using the trap vector located at memory address FFFC. The Im-lsequence begins following the execution
of the instruction in progress at the time the NMI request is initiated. The NMI will also terminate an idle
state. If ITM—I is active during the time RESET is released, the W sequence will occur following completion
of the reset sequence, but prior to execution of the first instruction in the reset service routine. NMi mustbe
active for at least one CLKOUT cycle to be recognized and will only be recognized once for each high-to-
low transition.

RESET. When active low, RESET causes the processor to set all status bits to zero and inhibits WE/
EEL_K, ﬁ and MEM internally. When RESET is released, the processor initiates a level 0 interrupt
sequence using the trap vector at memory address 0000, clears the entire status register, and begins
executing the reset service routine. RESET also will terminate an idle state. RESET must be held active for
at least three CLKOUT periods to guarantee that a Reset will take place. RESETisa Schmitt-trigger input.

DMA REQUEST

HOLD

HOLD. An external controller generates a hold request by pulling the processor’s HOLD input low. This
indicates the controller’s wish to obtain control of the local bus to perform one or more DMA transfers. The
processor responds to the hold request by outputting a HOLDA bus status code (Table 12} and
then forcing MEM, WE/IOCLK, RD, BST1-BST3, R/W, ALATCH and the address data lines to the
high-impedance state. When HOLD is released, the processor terminates the hold cycle and
resumes processing.

BUS STATUS

BST1 (MSB)
BST2
BST3 (LSB)

488

ouT
out
ouT

Bus status lines. These lines are used with the MEM output to provide external circuitry with information
concerning the nature of the bus cycle currently in progress. The bus status codes are presented in Table 2.
MPILCK is indicated by BST1-BST3 = 000. BST1-BST3 are forced to the high-impedance state during 2
hold cycle.

54

TABLE 13—PIN DESCRIPTION (CONCLUDED)

SIGNATURE I PIN I IIOT DESCRIPTION
ATTACHED PROCESSOR
APP 4 iN | Atiached processor present. When the TM 888000 feiches an MiD opcode {Section 2.4}, it outputs an MiD

bus status code and samples the APP input. If APP has been pulled low by an external device, the CPU
performs a context switch and relinguishes control of the local bus. The CPU fetches the new WP from the
level 2 trap vector, and the old WP, PC, and ST are saved in the new workspace. The CPU signals
its release of the local bus by outputting a HOLDA bus status code and then enters hold, After the
attached processor has completed its operation, it releases A—P—P; the CPU responds by terminating,
restoring its context, and resuming processing.

1f no external device asserts APP, the CPU attempts to emulate the MID opcode in Macrostore and traps to
the level 2 interrupt service routine if the opcode is undefined in Macrostate.

-b

=
-

10.2

10.2.1

10.2.2

10.2.3

INSTRUCTION SET
DEFINITION

Each TMS99000 instruction performs one of the following:

« Arithmetic or logical operation on data, or comparison or manipulation of data,

« Loading or storing of internal registers (program counter, workspace pointer, or status register),
« Data transfer between memory and external devices via the /0, or

« Control functions.

ADDRESSING MODES

The TMS99000 instruction set provides a variety of modes for addressing random memory data, e.g., program parameters
and flags, or formatted memory data (character strings, data lists, etc.). These addressing modes are:

« Workspace register addressing

« Workspace register indirect addressing

« Workspace register indirect autoincrement addressing

« Symbolic (direct) addressing

« Indexed addressing

« Immediate addressing

« Program counter relative addressing

« 1/0 relative addressing

The derivation of the effective address for each addressing mode is described graphically below. The applicability of each
addressing mode to particular instructions is described in Section 10.5, along with the operation performed by each
instruction. The symbols following the names of the addressing modes, R, *R, *R+, @LABEL and @TABLE(R), are the
general forms used by processor assemblers to specify the addressing mode for workspace register R.

Workspace Register Addressing, R

Workspace register R contains the operand.
REGISTERR

(PC) —»4 INSTRUCTION > (WP) + 2R-9 OPERAND

The workspace register addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to 0.
Workspace Register Indirect Addressing, *R

Workspace register R contains the address of the operand.
REGISTER R

(PC)—» INSTRUCTION & (WP)+2R-»} ADDRESS -—.| OPERAND

The workspace register indirect addressing mode is specified by setting the two bits in the T-field (Ts or Td of the
instruction word to O1.

Workspace Register Indirect Autoincrement Addressing, *R +

Workspace register R contains the address of the operand. After acquiring the address of the operand, the contents of the
workspace register are incremented.

REGISTERR
INSTRUCTION —(WP) + 2R-d ADDRESS OPERAND
1(byte)
or
2 (word)

The workspace register indirect autoincrement addressing mode is specified by setting the two-bit T-field {Ts or Td) of the
instruction word to 3.

56

10.2.4 Symbolic (Direct) Addressing, @LABEL

The word following the instruction contains the address of the operand.

(PC) INSTRUCTION

{PC)+2+ LABEL 1 OPERAND

The symboiic addressing mode is specified by setting the two-bit T-fieid (Ts or Td) of the instruction word to 2 and setting
the corresponding S or D field equal to 0.

10.25 Indexed Addressing. @TABLE(R)

The word following the instruction contains the base address. Workspace register R contains the index value. The sum of
the base address and the index value results in the effective address of the operand.

REGISTERR
(PC)—o INSTRUCTION —» (WP) + 2R INDEX VALUE}|

EFFECTIVE
ADDRESS

OPERAND

{PC) +2-» TABLE

The indexed addressing mode is specified by setting the two-bit T-field {Ts or Td) of the instruction word to 2 and setting
the corresponding S or D field to a value other than 0. The value in the S or D field is the number of the workspace register
which contains the index value.

10.2.6 Immediate Addressing

The word following the instruction contains the operand.

(PC)—1 INSTRUCTION

(PC) +2 - OPERAND

10.2.7 Program Counter Relative Addressing

The 8-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and added to the
updated contents of the program counter. The resultis placed in the PC.

JUMP INSTRUCTION
PROGRAM COUNTER OP CODE | - DISP —» 2*DISP
ADDRESS —»| NEXT MEMORY WORD

I

57

10.2.8 /O Relative Addressing

The 8-bit signed displacement in the right byte of the instruction is added to the 1/O base address (bits O through

14 of workspace register 12). The result is the address of the selected bit in /O space.

(PC)———» OP CODE | DISP

(WP)+2*12——— BASE

10.3 TERMS AND DEFINITIONS

INSTRUCTION

0 7 8 15
REGISTER 12

CRUBIT
ADDRESS

ADD
0 56 14 15

The terms used in describing the instructions of the processor are defined in Table 14.

TABLE 14— SYMBOL CONVENTIONS

SYMBOL DEFINITION

B Byte indicator {1 = byte; 0 = word)

C Bit count

D Destination address register

DA Destination address

10P Immediate operand

LSBi{n) Least-significant (rightmost) bit of n

MSBI(n) Most-significant (leftmost) bit of n

N Don’t care

PC Program counter

result Result of operation performed by instruction

S Source address register

SA Source address

ST Status register

STn Bit n of status register

Td Destination address modifier

Ts Source address modifier

w Workspace register

WRn Workspace register n

(n) Contents of n

{{n)) Indirect contents of n

a—+b Ais transferred to b

{n] Absoiute vaiue of n

+ Arithmetic addition

- Arithmetic subtraction

AND Logical AND

OR Logical OR
® Logical exclusive OR
n Logical complement of n

. Arithmetic multiplication

1/0 base address The address which is stored in WR12

effective I/0 base address The address which is formed by adding the displacement to the base address in WR12 for single

bit 1/0, or the incremented value of WR12 for multibit /0.

170 bit address The effective address of a bit located in the lower half of the I/0 space.

58

10.4 STATUS REGISTER MANIPULATION
Various TMS99000 machine instructions affect the status register. Figure 5 shows the status register bit assignments.
Table 15 lists the instructions and their effect on the status register.
TABLE 15 — STATUS REGISTER BIT DEFINITIONS*
CONDITIONS TOSETBITTO 1
BIT NAME INSTRUCTION (OTHERWISE SET TO 0)
STO LOGICALLY c,Cs If MSB(SA) = 1and MSB(DA) =0, orif
GREATER MSB(SA)=MSB(DA) and MSB((DA) - (SA)) =1
THAN c If MSB(W) = 1 and MSB of IOP =0, or i
MSB(W) = MSB of IOP and MSB(IOP — (W)} =1
ABS, LDCR If (SA) is not zero
RTWP If bit 0 of WR15is 1
LST I bit 0 of selected WR is 1
A, AB, Al If resultis not 0
AM, ANDI, (see Note 2}
DEC, DECT,
LI, MOV,
MOVB, NEG,
ORI, S, SB,
DIVS, MPYS,
INC, INCT,
INV, SLA,
SLAM, SM,
SOC, SOCB,
SRA, SRAM,
SRC, SRL,
STCR, SZC,
SZCB, XOR
Reset STO s cleared unconditionally
All other STOis not affected
instructions (see Note 1)
and
interrupts

*See Table 13 for definition of terminology used.

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TO SETBITTO 1
{OTHERWISE SET TO 0)
ST1 ARITHMETIC c,CB If MSB(SA)=0and MSB(DA) =1, orif
GREATER MSB(SA)=MSB(DA) and MSB((DA) - (SA)) =1
THAN cl If MSB(W) =0and MSB of IOP = 1, orif
MSB(W) =MSB of IOP and MSB{IOP — (W)} =1
ABS, LDCR If MSB(SA)=0and (SA}is not0
RTWP If bit 1 of WR15is 1
LST If bit 1 of selected WR is 1
A, AB, Al, If MSB of result = 0,
AM, ANDI, and result is not 0
DEC, DECT, (see Note 2)
LI, MOV,
MOVB, NEG,
ORI, S, SB,
DIVS, MPYS,
INC, INCT,
INV, SLA,
SLAM, SM,
SOC, SOCs,
SRA, SRAM,
SRC, SRL,
STCR, SZC,
SZCB, XOR
Reset ST1is cleared unconditionally
All other ST1is not affected
instructions (see Note 1)
and
interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

60

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TOSETBITTO 1
(OTHERWISE SETTO0)
ST2 EQUAL/TB C,CB If (SA)=(DA)
INDICATOR cl If (W) = IOP

coC If ((SA)and not (DA)) = 0
czC If ((SA)and (DA)) = 0
TB £ CRUIN = 1 for addressed CRU bit
TSMB, TCMB, If addressed memory bit = 1
TMB
ABS, LDCR If (SA)=0
RTWP If bit 2 of WR15is 1
LST If bit 2 of selected WRiis 1
A, AB, Al, AM, If result = 0
ANDI, DEC, (see Note 2)
DECT, LI,
MOV, MOVB,
NEG, ORI, S,
SB, DIVS,
MPYS, INC,
INCT, INV,
SLA, SLAM,
SM, SOC,
SOCB, SRA,
SRAM, SRC,
SRL, STCR,
SZC, SZCB,
XOR
Reset ST2is cleared unconditionally
All other ST2is not affected
instructions (see Note 1}
and
interrupts

ST3 CARRY OUT A, AB, ABS,
Al, AM, DEC,
DECT, INC,
INCT If carry out = 1
NEG, S, SM, -
SB
SLA, SRA,
SRL, SRC, If last bit shifted out = 1
SRAM, SLAM
RTWP If bit 3 of WR15is 1
LST If bit 3 of selected WRis 1
Reset ST3is cleared unconditionally
All other ST3is not affected
instructions {see Note 1)
and
interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. if on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

61

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TO SETBITTO1
{OTHERWISE SETTO0)
ST4 ARITHMETIC A, AB, AM fMSB(SA}=MSB(DA) and
FAULT MSB of result # MSB(DA)
Al If MSB(W) # MSB of IOP and
MSB of resuit # MSB(W)
S, SB, SM if MSB(SA)=MSB(DA) and
MSB of result = MSB(DA)
DEC, DECT If MSB(SA) =1and MSB of result = 0
INC, INCT if MSB{SA)=0and MSB of result = 1
SLA, SLAM If MSB changes during shift
DIV if MSB(SA)=0and MSB(DA)=1, orif
MSB(SA)=MSB(DA) and MSB({DA) - (SA)) =0
DIVS If the quotient cannot be expressed
as signed 16-bit quantity (>>8000
is a valid negative number}
ABS, NEG If (SA) =>>8000
RTWP If bit 4 of WR15is 1
LST If bit 4 of selected WR is 1
Reset ST4 s cleared unconditionally
All other ST4is not affected”
instructions
and interrupts
STS PARITY CB, MOVB If (SA) has odd number of ones
(0DD NO. LDCR i C = 1toB8and (SA} has odd
OF “1” number of ones (if C = 9to 15
BITS) or C =0, then STH is not affected)
AB, SB,
SOCB, SZC8B, If result has odd number of ones
STCR If C = 1to8and the result has
an odd number of ones (if C=0or
C = 91to 15, then ST5 not affected)
RTWP If bit 5 of WR15is 1
LST If bit 5 of selected WR is 1
Reset ST5 s cleared unconditionally
Ali other ST5is not affected
instructions (See Note 1)
and
interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

62

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TOSETBITTO 1
{OTHERWISE SET TO 0)
576 XOPIN XoP If XOP instruction is executed
PROGRESS (ST6 set after the context switch)
RTWP* If executed when ST7 =1
(non-privileged mode),
then ST6 is cieared
LST* If executed when ST7 =1
{non-privileged mode),
then ST6 is cleared.
Reset ST6 is cleared unconditionally
All other ST6is not affected
instructions {see Note 1)
and
interrupts
ST7 PRIVILEGED RTWP* If bit 7 of WR15is 1
MODE LST* If bit 7 of selected WR is 1
XOP, any ST7is cleared unconditionally
interrupt
All other ST7is not affected
instructions (see Note 1)
ST8 MAP RTWP* If bit 8 of WR15is 1
SELECT LST* If bit 8 of selected WR is 1
XOP, any ST8 s cleared unconditionally
interrupt prior to read of trap vector.
Previous value is saved in WR15.
LDCR, STCR, ST8 temporarily driven to 0 while
SBO, SBZ, CRU address is on the address bus
B
All other ST8is not affected
instructions {see Note 1)
ST9 UNDEFINED RTWP* If bit 9 of WR15is 1
LST* If bit 9 of selected WR is 1
XOP, any ST9 s cleared unconditionally
interrupt
All other Do not affect status bit
interrupts (see Note 1)
ST10 ARITHMETIC RTWP* If bit 10 of WR15is 1
FAULT LST* If bit 10 of selected WR s 1
INTERRUPT . .
XOP, any ST10 s cleared unconditionally
ENABLE interrupt
All other S$T10is not affected
instructions (see Note 1)

*Status bits 7, 8, 9, 11, 12, 13 and 14 are not affected by LST or RTWP if ST7 = 1 before these instructions are executed.

Note 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

63

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONCLUDED)

CONDITIONS TO SETBITTO 1
BIT NAME INSTRUCTION
) (OTHERWISE SET TO 0)
ST11 XOP RTWP* If bit 11 of WR15is 1
EMULATION LST* If bit 11 of selected WR is 1
MODE
XOP, any ST11 s cleared unconditionally
interrupt
All other ST8is not affected
instructions
ST12 INTERRUPT LIMIt Set mask = bits 12-15 of IOP
to MASK
ST15 RTWP* Set mask = bits 12-15 of WR15
LST* Set mask = bits 12-15 of WR
RSETt Mask is unconditionally cleared
RESET, NMI (set to all zeros)
All other If mask = 0, no change;
interrupts otherwise, set mask to interrupt
level minus one.
All other Mask is not affected
instructions (see Note 1)

*Status bits 7,8, 9, 11, 12, 13, and 14 are not affected by LST or RTWP if ST? = 1 before these instructions are executed.

TST12 to ST15 are not affected by LIMI and RSET if ST7 = 1.
NOTE 1: The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.

105

INSTRUCTIONS

A list of the instructions described in each of the following subsections is presented below for convenient reference.

Instruction Mnemonic

A, AB, C, CB, S, SB, SOC, SOCB, SZC, SZCB, MOV, MOVB
COC, CZC, XOR, MPY, DIV

MPYS, DIVS
XopP

B, BL, BLWP, CLR, SETO, INV, NEG, ABS, SWPB, INC, INCT, DEC, DECT, X

BIND
LDCR, STCR
SBO, SBZ, TB

JEQ, JGT, JH, JHE, JL, JLE, JLT, JMP, UNC, UNE, JNO, JOC, JOP

SLA, SRA, SRC, SRL

Al, ANDiI, CI, LI, ORI, BLSK

LWPI, LiIMi

STST, LST, STWP, LWP

RTWP

IDLE, RSET, CKOF, CKON, LREX

TMB, TCMB, TSMB

AM, SM, SLAM, SRAM

MID opcodes
LDD, LDS

LR, STR, NR, CER, CIR, CRE, CRI, AR, DR, SR, MR

Section
10.5.1

10.5.2
10.5.3
10.54
10.5.5
10.5.6
10.5.7
10.5.8
10.5.9
10.5.10
10.5.11
10.5.12
10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18
Appendix B
Appendix B

10.5.1 Dual-Operand Instructions with Multiple Addressing for Source and Destination Operand
General 0 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: | opcobE | B [Td | D [s | S |
If B = 1, the operands are bytes and the effective operand addresses are byte addresses. If B = 0, the operands are words
and the LSB of each effective operand address is ignored. .
The addressing mode for each operand is determined by the two bits of the T-field corresponding to that operand.
TsorTd SorD ADDRESSING MODE NOTES
0 0,1,...,15 Workspace register 1
1 01,...,15 Workspace register indirect
2 0 Symbolic 4
2 1,2,...,15 Indexed 24
3 01,...,15 Workspace register indirect autoincrement 3
NOTES: 1. Whenaworkspace register is the operand of a byte instruction (bit3 = 1), theleft byte (bits 0 through 7) is the operand and the right byte (bits 8 through 15}
is not altered.
2. Workspace register 0 may not be used for indexing.
3. Theworkspace register is incremented by 1 for byte instructions (bit 3 = 1) and is incremented by 2 for word instructions (bit 3 = 0).
4. WhenTs = Td = 2, two words are required in addition to the instruction word. The first word is the source operand and th d word is the d
operand base address.
RESULT
OPCODE COMPARED BITS STATUS
MNEMONIC 0123 MEANING TO00 AFFECTED DESCRIPTION
A 1010 Add Yes 04 (SA)+(DA) —(DA)
AB 1011 Add bytes Yes 0-5 (SA}+ (DA} —(DA) .
[1000 Compare No 0-2 Compare (SA) to (DA) and set ap-
propriate status bits
CcB 1001 Compare bytes No 02,5 Compare {SA) to (DA) and set ap-
propriate status bits
S 0110 Subtract Yes 04 {DA} - (SA) — (DA}
SB 0111 Subtract bytes Yes 05 {DA)~ (SA} =(DA)
SOC 1110 Set ones corresponding Yes 0-2 (DA) OR (SA} —(DA)
SOcCB 1M Set ones corresponding bytes Yes 02,5 (DA) OR (SA) —(DA)
szC 0100 Set zeros cormresponding Yes 0-2 (DA) AND (SA) —(DA}
SZCB 0101 Set zeros corresponding Yes 02,5 ({DA) AND (SA) —{DA)
MOV 1100 Move Yes 0-2 (SA) —(DA)
MOVB 1101 Move bytes Yes 0-25 (SA) — (DA}
10.5.2 Dual-Operand Instructions with Multiple Addressing Modes for the Source Operand and Workspace Register

Addressing for the Destination

General 0 1 2 3 4 6 7 9 10 11 12 13 14 15
Format: OPCODE D [15 | HE |
The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES

0 01,...,15 Workspace register

1 0,1,...,15 Workspace register indirect

2 0 Symbolic

2 1,2,....,15 Indexed 1

3 12,...,15 Workspace register indirect autoincrement 2

NOTES: 1. Workspace register 0 may not be used for indexing.

2. Theworksp

isir dby2.

65

OPCODE
MNEMONIC 012346
coc 001000
czc 001001
XOR 001010
MPY 001110
DIv 001111

DESCRIPTION

RESULT STATUS
COMPARED BITS
MEANING T00 AFFECTED

Compare ones corresponding No 2
Compare zeros corresponding No 2
Exclusive OR Yes 02
Muttiply No ——
Divide No 4

Test (D) to determine if 1s are in
each bit position where 1s are in
(SA). If so, set ST2.

Test (D) to determine if Os are in
each bit position where 1s are in
(SA). If so, set ST2.

(D) +(SA) — (D)

Multiply unsigned (D) by unsigned
(SA) and place unsigned 32-bit
product in D (most significant) and
D + 1 (least significant). If WR15 is
D, the next word in memory after
WR15 is used for the least signifi-
cant half of the product.

If unsigned (SA) is less than or equal
to unsigned (D), perform no opera-
tion and set ST4. Otherwise, divide
unsigned (D) and (D+1) by un-
signed (SA). Quotient — (D), re-
mainder —»(D + 1) If D = 15, the next
word in memory after WR15 will be
used for the remainder.

10.5.3 Signed Multiply and Divide Instructions

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: [OPCODE | Ts] S
The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES

00 0,1,...,15 Workspace register 1

01 01,...,15 Workspace register indirect 1

10 1] Symbolic 1

10 12,...,15 Indexed 1,2

n 12....15 Workspace register indirect autoincrement 1.3

NOTES: 1. Workspace registers 0 and 1 contain operands used in the signed multiply and divide operations.
2. Workspace register 0 may not ba used for indexing.
3. The workspace register is incremented by 2.

66

RESULT STATUS

OPCODE COMPARED BITS
MNEMONIC 0123466789 MEANING TO00 AFFECTED DESCRIPTION

MPYS 0000000111 | Signed Multiply Yes 02 Multiply signed 2's complement in-
teger in WRO by signed 2's comple-
ment integer in (SA) and place
signed 32-bit product in WRO (most
significant) and WR1 (least signifi-
cant).

Divs 0000000110 | Signed Divide Yes 024 if the quotient cannot be expressed

as a signed 16-bit quantity (hex 8000
is a valid negative number), set ST4.
Otherwise, divide the signed, 2's
complement integer in WRO and
WR1 by the signed 2's complement
integer at SA and place the signed
quotient in WRO and the signed re-
mainder in WR1. The sign of the
quotient is determined by algebraic
rules. The sign of the remainder is
the same as the sign of the dividend,
and |[REMAINDER| < |DiV]|.

10.5.4

Extended Operation (XOP) Instruction

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Foma: [0 ©0 1 0 1 1| D Ts | S |

The Ts and S fields provide multiple-mode addressing capability for the source operand.

Depending on the value of status bit 11 (ST11), the XOP instruction transfers control to a user routine located either at the
main memory address in the specified XOP trap vector, or at Macrostore.

¥ ST11 = 0, the D field specifies the trap vector in memory that contains the addresses of the entry point and workspace of
the user routine to be executed. The address of the trap vector is calculated as
>0040 + >4 x >D

Following the fetch of the new WP and PC values, the effective source address (SA} is calculated and placed in WR11 of
the new workspace. The old WP, PC and ST are stored in WRs 13, 14and 15, respectively. Status bit6issetto 1,and STs7
through 11 are cleared after the old status has been saved.

When ST11 = 1, the XOP causes a trap to Macrostore if the 99000 is not in the baseline mode. The contents of the WP are
forced to 0, and the PC is updated with the value contained at Macrostore address >0812. The new WP and PC point to
locations within the Macrostore, where address space is logically distinct from the main memory address space. The old
WP, PC and ST are stored in registers 13, 14 and 15, respectively, of the Macrostore workspace. Status bits 7 through 11
are cleared after the old status has been saved.

The execution of the XOP instruction is summarized below. If ST11 is 0, the addresses are memory addresses; if ST11is 1
and the 99000 is not in baseline mode, the addresses are in Macrostore.

i ST11is O: If ST11 is 1 Macrostore is entered and:
(0040 +4 xD) =~ WP 0—-wp
{0042 +4 xD) = PC (0812) - PC
SA - new WR11 (old WP} ~» (new WR13)
(old WP) = (new WR13) (old PC) ~ (new WR14)
{old PC) = (new WR14) (old ST) = {(new WR15)

(old ST) = (new WR15)
1-+ST6 O0-ST9
00—+ ST7 0—=ST10
0—+S8T8 0-ST11

The TMS99000 does not test interrupt requests (i.e., does not ook at INTREQ) upon compietion of the XOP instruction.

67

10.5.5 Single Operand Instructions
General 0 2 3 4 5 6 8 9 10 1 12 13 14 15
Format: OPCODE Ts s |
The Ts and S fields provide multiple-mode addressing capability for the source operand.
RESULT BITS
MNEMONIC 0123456789 MEANING TOO0? AFFECTED DESCRIPTION
B 0000010001 Branch No - SA —(PC)
BL 0000011010 Branch and link No - {PC) = (WR11),
SA —{PC)
BLWP 0000010000 Branch and load
workspace pointer No - (SA) — (WP), (SA+2) = (PC), (old WP),
~ (new WR13), (old PC) =»(new WR14),
(old ST) —» (new WR15). The INTREQ
input is not tested upon completion of the|
BLWP instruction.
CLR 0000010011 Clear operand No - 0 —=(SA)
SETO 0000011100 Set to ones No - FFFF —(SA)
INV 0000010101 Invert Yes 0-2 {SA) —»(SA)
NEG 0000010100 | Negate Yes 04 —(SA) -»(SA)
ABS 0000011101 Absolute value” No 04 |(SA)] —=(SA)
SWPB 0000011011 Swap bytes No - Bits 0-7 of (SA) —»bits 8-15 of (SA); bits 8-
15 of (SA} —>bits 0-7 of (SA).
INC 0000010110 Increment Yes 04 (SA)+1—(SA)
INCT 0000010111 | Increment by two Yes 04 (SA)+2 —(SA)
DEC 0000011000 Decrement Yes 04 (SA)—-1 —(SA)
DECT 0000011001 Decrement by two Yes 04 (SA)- 2 —»(SA)
Xt 0000010010 Execute No —— Execute instruction located at SA.
*Operand is compared to zero for status bit.
i additional memory words for the e il ion are required to define the operands of the instruction located at SA, these words will be accessed from PC and the

PC will be updated accordingly. The IAQ (instruction acquisition) bus status code will not be ouput at the time the process reads the instruction at SA; instead, an SOP

{source operand) or WS bus status code will be output. Status bits are affected in the usual for the operation perf: d.

10.5.6 BIND Instruction
General 0 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15
Format: OPCODE [1 | S
The Ts and S fields provide multiple-mode addressing capability for the source operand.
The BIND instruction serves as the inverse of a BLSK instruction if the register indirect autoincrement addressing
mode is used. Indexed addressing used with BIND implements a powerful CASE or multi-way branch instruction
where the immediate operand points to a table of branch addresses and the register contents selects which way to
branch.

RESULT BITS
MNEMONIC 0123456789 MEANING TOO? AFFECTED DESCRIPTION
BIND 0000000101 Branch indirect No -— (SA)—~(PC)

10.5.7 Muitiple-Bit I/O Instructions
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: | OPCODE] CNT | T] S |

The 1/0 base address is contained in bits 0 through 14 of WR12. If bit 0 (the MBS) of the base address is 0, a serial 1/0
transfer will occur; otherwise (MSB = 1}, a parallel 1/0 transfer will occur.

In the case of a serial 1/0 transfer, the CNT field specifies the number of bits to be transferred (from 1to 16). If CNT =0, 16
bits are transferred. The base address in WR 12 defines the starting 1/0 bit address. The bits are transferred in bit-serial
fashion, and the I/O base address is incremented by 2 with each bit transfer; the contents of WR12 are not affected. The
effective source address in memory, specified by the Ts and S fields, is interpreted as a byte address if 8 or fewer bits are ..

transferred (CNT = 1 through 8), or as a word address if 9 or more bits are transferred (CNT =0, 9 through 15). If the source
is addressed in the workspace indirect autoincrement mode (Ts = 3), the specified workspace register is incremented by 1 if
CNT isin the range 1 to 8, and is incremented by 2 otherwise. If the source is addressed in the register mode (Ts =0), bits 8
through 15 of the specified workspace register are unchanged if the transfer is of 8 bits or less.

In the case of a paralliel I/ O transfer, the CNT field determines whether a byte or word is to be transferred, and also whether
the contents of WR12 are to be incremented by 2 following the transfer. A word transfer occurs if CNT is (binary) 1010 or
1011; abyte transfer occurs if CNT is 0010 or 0011. WR12 is post-incremented by 2 if CNT is 0011 or 1010. All values of CNT
besides 0010, 0011, 1010 and 1011 are reserved for future expansion of the parallel /0 capability and should not be used.
The following table summarizes the use of the CNT field for a paraliel /O operation.

TRANSFER CNT* DESCRIPTION
(BINARY)
byte 0010 WR12 not altered
transfer 0011 WR12 post-incremented by 1
word 1010 WR12 not altered
transfer 1011 WR12 post-incremented by 2

*These restrictions on the value of CNT apply only in the case of parallel I/0 operations.

When in user mode (ST7 = 1), an attempt to execute an LDCR instruction having a 1/0 address in the range 1C00 to 7FFE
or9C00 to FFFE is flagged as a privileged opcode violation. This condition generates a level 2 interrupt and inhibits writes to
thel/Qin the privileged space for the duration of the instruction. When in privileged mode {ST7 = 0), the /0 address of an
LDCR instruction is unrestricted. When in user mode (ST7 = 1), an attempt to execute an STCR with an 1/0 address 1C00
to 7FFE or 9C00 to FFFE causes a privileged violation to occur after execution of the instruction.

RESULT STATUS
OPCODE COMPARED BITS
MNEMONIC 012345 MEANING TOO0 AFFECTED DESCRIPTION
LDCR 001100 Load communication register Yes 0-2,5* Beginning with LSB of (SA), transfer
the specified number of bits from
(SA)tothe 1/0.
STCR 001101 Store communication register Yes 0-2,5* Beginning with LSB of {(SA), transfer
the specified number of bits from the
1/0 to (SA). Load unfilled bit posi-
tions with 0.
*STSis affected only if CNT is in the range 1to 8.
10.5.8 Single-Bit I/0 Instructions
General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: l OPCODE I SIGNED DISPLACEMENT J

The signed displacement is added to the contents of WR12 (bits 0-14) to form the address of the I/0 bit to be selected, as
described in Section 8.2.8.

Whenin user mode (ST7 = 1), if the effective /O address of an SBO or SBZ instruction is in the range >1C00to >7FFE or
>9C00 to > FFFE, a privileged violation occurs (Section 4.4.3) and the 1/0 write is inhibited. When in privileged mode
(ST7 = 0), no restrictions are placed on the range of the effective |/0 address.

Theuseris cautioned that while the SBO and SBZ instructions can be used to access the parallel |/0 address space { >8000
to >FFFF), and they will set or clear data bit D15 as expected, the other 15 bits (DO to D14} written to the parallel |/0
location will be undefined. When the TB instruction is executed with an address in parallel 1/0 space, the bit valueinputon
data line DO is read.

When in Macrostore, the SBO, SBZ and TB instructions are not available. The SBO and SBZ opcodes perform different
functions when in Macrostore (see Section 7.3.3.6).

STATUS
OPCODE BITS
MNEMONIC 0123 4567 MEANING AFFECTED DESCRIPTION
SBO 0001 1101 Set bit to one - - Set the selected output bit to 1.
SBz 0001 1110 Set bit to zero -- Set the selected output bit to O.
T8 0001 1111 Test bit 2 If the selected I/0 input bit is 1, set ST2; if
the selected I/O input bit is O, clear ST2.

10.5.9 Jump Instructions

Geneal 0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15
Format: | OPCODE | SIGNED DISPLACEMENT |

Jump instructions cause the PC to be loaded with the PC-relative jump address if the selected status bits are set as
specified; otherwise, no jump occurs and the next instruction is fetched from the word following the jump instruction. The
jump address is computed by adding twice the signed displacement to the current value of the PC (which points to the
word following the jump instruction). The 8-bit displacement permits the computed jump address to be specified any-
where in the range ~ 128 to + 127 words from the address of the word that follows the jump instruction. Status register
bits are not affected by jump instructions.

OPCODE STATUS CONDITION
MNEMONIC 01234567 MEANING TO LOAD PC

JEQ 00010011 Jump equal ST2 = 1
JGT 00010101 Jump greater than ST1 =1

JH 00011011 Jump high STO = 1end ST2 = 0

JHE 00010100 Jump high or equal STO = 10rST2 = 1

JL 00011010 Jump fow STO = 0and ST2 = 0

JLE 00010010 Jump low or equal STO = O or ST2 = 1

JLT 00010001 Jump less than ST1 =0and ST2 = O
JMP 00010000 Jump unconditional Unconditional

JNC 00010111 Jump no carry §ST3 =0

JNE 00010110 Jump not equal ST2 =0
JNO 00011001 Jump no overflow ST4 =0
Joc 00011000 Jump on carry ST3 =1

Jop 00011100 Jump odd parity STS =1

10.5.10 Shift Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: | OPCODE sC w

Field SC contains the shift count. W is the number of the workspace register whose contents are to be shifted. f SC = 0,
however, bits 12 through 15 of WRO are used as the shift count. if SC = 0 and bits 12 through 15 of WRO0 are 0, the
effective shift count is 16.

RESULT STATUS
OPCODE COMPARED BITS
MNEMONIC | 01234567 MEANING TO 0 AFFECTED DESCRIPTION

SLA 00001010 Shift left arithmetic Yes 0-4 Shift (W) left. Fill vacated bit positions
with O.

SRA 00001000 Shift right arithmetic Yes 0-3 Shift (W) right. Fill vacated bit positions
with original MSB of (W).

SRC 00001011 Shift right circular Shift (W) right. Shift previous LSB into
MSB.

SRL 00001001 Shift right logical Yes 0-3 Shift (W) right. Fill vacated bit positions
with zeros.

70

10.5.11 Immediate Register Instructions

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

General OPCODE | w
Format: 10P
OPCODE RESULT BITS
MNEMONIC 0123 45678 91011 MEANING TO0? AFFECTED DESCRIPTION
Al 0000 00100 010 Add immediate Yes 0-4 (W) +10P - (W)
ANDI 0000 00100 100 AND immediate Yes 0-2 (W) AND IOP — (W)
Cl 0000 00101 000 Compare immediate Yes 0-2 Compare (W) to IOP and set ap-
propriate status bits.
LI 0000 00100 000 Load immediate Yes 0-2 10P —(W)
ORI 0000 00100 110 OR immediate Yes 0-2 (W) OR IOP —
BLSK 0000 00001 011 Branch immediate and push link
to stack No - (W)-2 = (W), (PC)+4 = ((W
10P — (PC)

10.5.12 Internal Register Load Immediate Instructions

0 1 2 3 4 5] 7 8 9 10 1N 12 13 14 15
General OPCODE 0 0 0 0 0
Format: 10P

Whenin user mode (ST7 = 1}, execution of the LIMI instruction is flagged as a privileged opcode violation (Section 4.4.3).

OPCODE
MNEMONIC 0123 4567 8910 MEANING DESCRIPTION
LWPI 0000 0010 111 Load workspace pointer inmediate |IOP — (W) not status bits affected.
LIMI 0000 0011 000 Load interrupt mask immediate IOP — ST bits 12 thru 15, ST12 thru ST15.

10.5.13 Internal Register Load and Store Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: (OPCODE] W]
STATUS
OPCODE BITS
MNEMONIC 0123 4567 891011 MEANING AFFECTED DESCRIPTION
STST 0000 0010 1100 Store status Register - - (ST} = (W)
LST 0000 0000 1000 Load status Register 0-15 (W) = (ST)
STWP 0000 0010 1010 Store workspace pointer - - (WP) = (W)
LWP 0000 0000 1001 Load workspace pointer - (W) = (WP)

While in privileged mode (ST7 = 0), the LST instruction modifies all 16 bits of the status register. While in user mode (ST7
= 1), only bits 0 through 5 and bit 10 of the workspace register specified in the W field are placed in the status register; ST6
is cleared and the other status register bits are unaffected.

n

10.5.14

Return Workspace Pointer (RTWP) Instruction

General 0 1 2 3 4 5 6 7 8 9 W0 112 13 14 15
Fomat: [0 0 0 o0 o0 o0 1 1 1 0 0 0 o0 o0 0 0]

The RTWP instruction causes the following transfers to occur:
{(WR15) — (ST)
(WR14) = (PC)
(WR13) = (WP)

When in privileged mode (ST7 = 0), the RTWP instruction causes the entire contents of WR15 to be loaded into the status
register. In user mode {ST7 = 1), only bits 0 through 5 and 10 of WR15 are loaded into the status register; ST6 is cleared
and the other status register bits remain unaffected.

When in Macrostore, several variations of the RTWP instruction opcode are available. These are opcodes >0381, > 0382,
and >0384. These opcodes are summarized below. More detail in the operation of these special opcodes is given in
Section7.3.2

RTWP Opcode | Function
> 0380 RTWP when in main memory or exit from Macrostore with interrupts sampled
> 0381 RTWP when in Macrostore memory (does not cause exit from Macrostore)
>0382 Exit from Macrostore with level 2 trap
>0384 Exit from Macrostore and suppress interrupt sample.
10.5.15 External Instructions
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: | OPCODE [] o o o o o
External instructions cause a bit value of 0 to be written to a I/ O address 1ECX, where the hexadecimal digit represented as
X" depends upon the particular external instruction being executed. During execution of the RSET, CKOF, CKON and
LREXinstructions, the WE/IOCLK output s pulsed low once. With the completion of the single I/O write cycle, execution
of the external instruction is finished, and the processor proceeds to the next instruction. While in privileged mode (ST7 =
0), execution of RSET causes the interrupt mask {ST12-ST15) to be cleared. None of the other external instructions affect
the status register.
When the IDLE instruction is executed, the processor enters the idle state, where it remains until a Reset, NMI, ﬁ, or
unmasked external interrupt occurs. While in the idle state, the processor pulses the WE/IOCLK output repeatedly, with
each 1/0 write cycle accompanied by a I/0 bus status code (Table 2). The PC value saved during the context switch to the
Reset, NMI or interrupt service routine points to the instruction following the IDLE.
When in user mode (ST7 = 1), execution of an external instruction is flagged as a privileged opcode violation (Section
4.4.3).
STATUS 110
OPCODE BITS ADDRESS
MNEMONIC 0123 4567 8910 MEANING AFFECTED DESCRIPTION IN HEX
IDLE 0000 0011 010 Idie - - Suspend processor instruction
execution until an interrupt,
NMI or Reset occurs. 1EC4
RSET 0000 0011 011 Reset 12-15 Clear interrupt mask (ST12-
ST15) 1EC6
CKOF 0000 0011 110 User-defined - - - - 1ECC
CKON 0000 0011 101 User-defined - - - - 1ECA
LREX 0000 0011 111 User-defined - - - - 1ECE

72

10.5.16 Bit-Manipulation Instructions
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: OPCODE
0 0 0 0 0 0] BIT DISP] Ts] S
The Ts and S fields provide multiple-mode addressing capability for the source operand. The indirect autoincrement
addressing mode (Ts = 3), however, is undefined for the TMB, TCMB and TSMB instructions. If the two bits of the Ts
field are 3, an MID trap occurs.
Bit-manipulation instructions copy the specified memory bit into status bit 2, and set or clear the specified memory bit. In
order to provide an indivisible test-and-set operation, the MPILCK {multiprocessor interlock) bus status code is active
during the critical portions of the TSMB and TCMB instructions, exceptin the case Ts = 0 (register addressing mode).
STATUS
OPCODE BITS
MNEMONIC IN HEX MEANING AFFECTED DESCRIPTION*

T™MB 0Co09 Test memory bit 2 {(SA+BD) - ST2

TCMB oceA Test and clear memory bit 2 (SA+BD) = ST2, 0 = (SA+BD}

TSMB ocoB Test and set memory bit 2 {SA+BD) = ST2, 1 = (SA+BD)

*BD is used above to refer to the contents of the bit-displacement fieid.

If the leading 6 bits in the predefined field of the second word of the instruction are not as specified, an MID trap occurs.

10.5.177 Double-Precision Arithmetic Instructions
General Format:
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
ADD/SUB OPCODE
0 1 0 0 [Td l D J Ts l S
SHIFT OPCODE
0 1 0 0 0 0 | SC J Ts l S
STATUS
OPCODE BITS
MNEMONIC (HEX MEANING AFFECTED DESCRIPTION
AM 002A Add double 0-4 (SA,SA +2) +(DA,DA +2) -» (DA, DA+2)
SM 0029 Subtract double 0-4 (DA,DA+2) ~ (SA,SA+2) —~ (DA,DA+2)
SLAM 001D Shift left arithmetic double 0-4 Shift (SA,SA + 2) left. Fill vacated bit posi-
tions with 0. If SC=0, count is in bits 4
through 7 of WRO.
SRAM 001C Shift right arithmetic double 0-3 Shift (SA,SA + 2) right. Fill vacated bit posi-
tions with MSB. If SC=0, count is in bits 4
through 7 of WRO.

If the two bits in the Ts or Td field are 3 (workspace register indirect autoincrement addressing mode) the contents of the
corresponding workspace register are incremented by 4.

if SC = 0 in the shift instructions, the shift count is taken from bits 4 through 7 of WRO, which are interpreted as an
unsigned 4-bit integer. If bits 4 through 7 of WRO0 are 0, then the effective shift count is 0. Bits shifted out are shifted into
ST3. If the shift count is 0, ST3is set to 0.

During a SRAM the sign bit fills the vacated positions. During a SLAM, zeros fill the vacated positions.

If the bits in the predefined field of the second word of the instruction are not as specified, an MID trap occurs.

13

10.5.18

10.6
10.6.1

10.6.2

MID Opcodes
The single-word instruction opcodes that cause an MID trap (see Section 4.4.2) are:
0000-0018 02D0-02DF
001E-0028 02E1-02FF
002B-007F 0301-033F
00A0-00AF 0341-035F
00C0-013F 0361-037F
0210-021F 0381-039F
0230-023F 03A1-03BF
0250-025F 03C1-03DF
0270-027F 03E1-03FF
0780-07FF
0290-029F 0C00-0C08
02B0-02BF 0COC-OFFF
INSTRUCTION EXECUTION
Microinstruction Cycle

The TMS99000 microprocessor is a microcoded machine. Each instruction in the 99000 instruction set is executed
internally as a sequence of microinstructions, the length of the sequence varying according to the particular instruction.
Each microinstruction cycle is minimally one machine state in duration but can be extended with wait states by activating
the READY input. The term ‘‘wait-state'’ is used to describe the condition where the processor is ‘“frozen’ in its
present state and consequently cannot advance to the next state. In the 99000, all types of bus cycle —memory,
1/0 or internal — can be extended with wait-states. The ALATCH output toggles exactly once at the beginning of
each microinstruction cycle.

Opcode Prefetching

The TMS99000 increases its effective processing speed by prefetching opcodes where possible. By allowing successive
bus cycles to be overlapped, as shown in Figure 27, the time required to fetch the opcode from memory and decode it
becomes transparent when no wait states are required. In processing a typical instruction, e.g., register-to-register add,
the TMS99000 performs the following sequence of steps:

. Fetch instruction

. Decode instruction

Fetch source operand, if needed

Fetch destination operand, if needed

. Process the operands

. Store the results, if required

OO A WN =

The prefetch mechanism of the 93000 makes use of the fact that the processor’s memory interface can operate in parallel
with operations involving the processor’s internal buses and registers. For example, during step 5 above, the memory bus
is not needed by the current instruction, which is busy processing the operands internally. Hence, this time can be used to
prefetch the opcode for the next instruction. This overlapping is seen in Figure 32, where “MI" indicates an operation
performed by the memory interface, and “OP” denotes an internal operation. Deterministic: a prefetched opcode is
discarded only in the event that an interrupt occurs. Steps 1 and 2 above should really be considered part of the preceding
instruction. In other words, each instruction is responsible for prefetching the opcode for the next instruction. This
reduces the effective overhead of the typical instruction sequence given above to the four steps, 3-6. Without
overlap, the overhead would be six rather than four steps.

The instruction prefetch scheme employed by the 99000 can cause self-modifying software to execute incorrectly.
Incorrect execution results when one instruction attempts to generate the opcode of the very next instruction to be
executed. The TMS99000 fetches the opcode of the next instruction before storing the result of the current instruction.

14

10.6.3

see bus bus bus ' bus | bus l bus | oo
cycle 1 cycle2 cycle3 cycle 4 cycle5 cycle 6
process write
ore operands result instruction
n-1
oP Mi
fatch decode fetch fetch process write
instruction n instruc instruc source dest'n operands result
operand operand
Mi oP Mi MI oP Mi
fetch decode
instruction n + 1 instruc instruc LXK
Mi CP
.
increasing MI = memory interface
time

OP = internal operation

FIGURE 32 — OVERLAPPED INSTRUCTION EXECUTION

TMS99000 Instruction Execution Times

Instruction execution times for the TMS99000 are a function of the:

* Machine state time ts (four times the external input clock period),

* Particular addressing mode used in the event that the instruction provides multiple-mode addressing capability, and
* Number of wait states required per memory access.

Table 16* lists the number of machine states and memory accesses required to execute each 99000 instruction. For

instructions providing multiple addressing modes for one or both operands, the table lists the number of states and

memory accesses with all operands addressed in the workspace register mode. To determine the additional number of

states and memory accesses required for the other addressing modes, add the appropriate values from the table. The total

execution time for an instruction, assuming all memory requires the same number of wait states, is calculated as:
T=1ts(C +WM)

where:

T = total instruction execution time

ts = machine state time {four times the external input clock period)

C = number of states for instruction execution plus address modification

W = number of required wait states per memory access for instruction execution plus address modification

M = number of memory accesses

For example, consider a MOV instruction executed in a system for which ts = 0.167 psec. Assume that no wait states are
required to access memory, and that both operands are accessed in workspace register mode:
T=1ts{C+ WM) = 0.167 (3 + 0x 3} usec = 0.50 usec
If two wait states per memory access are required, the execution time becomes
T =0.167(3 + 2x3) usec = 1.50 usec
If the source operand was addressed in the symbolic mode and two wait states are required, then
T =1tc(C + WM),
C=3+1=4,
M=3+1=4,
T =0.167(4 + 2x4) usec = 2.0 usec

*Instruction prefetching is accounted for in Table 16. The table gives exact cycle counts required for instruction execution.

15

TABLE 16— INSTRUCTION EXECUTION TIMES

- MACHINE MEMORY ADDRESS
INSTRUCTIONS STATES ACCESS MODIFICATION
[M SOURCE DEST

A 4 4 A* A
AB 4 4 A A
ABS 5 3 A —
Al 4 4 - _
AM 12 8 A A
ANDI 4 4 — —
B 3 1 A -
BIND 4 2 A -
BL 5 2 A -
BLSK 7 5 - -
BLWP 10 6 A —
Cc 4 3 A A
cB 4 3 A A
Ct 4 3 — —
CKON 9 1 - —
CKOF 9 1 - -
CLR 3 2 A -
coc 4 3 A -
czc 4 3 A —
DEC 3 3 A -
DECT 3 3 A -
DIV (ST4is set) 6or10 4 A —
DIV (ST4 s reset)t 30 6 A —
DIVS (ST4 s set) 10,130r 33 4 A —
DIVS {ST4 s reset)t 34 6 A -
IDLE 9+2xN 1 - -
INC 3 3 A -
INCT 3 3 A -
INV 3 3 A -
JUMP (PC is changed) 3 1 - -

(PC is not changed) 3 1 - -
LDCR (CNT =0, serial) 40 3 A -

{CNT #0, serial) 8+2x CNT 3 A —_

(MSB R12 = 1, autoincrement R12) 8 4 A -

(MSB R12 =1, R12 not autoincremented) 8 3 A -
LDD and LDSt
Ll 3 3 — -
LiMI 5 2 - -
LMF#
LREX 9 1 - -
LST 7 2 — -

* Replace the letter ‘‘A: with appropriate value from Table A. The C and M values from Table A for the addressing mode used must be added to the C and M
values from this table.

1 Execution time is dependent upon the partial quotient after each clock cycle during execution.
¥ Execution time is added to the execution time of the source address.

16

TABLE 16 — INSTRUCTION EXECUTION TIMES (CONCLUDED)

MACHINE MEMORY ADDRESS
INSTRUCTIONS STATES ACCESS MODIFICATION
C M SOURCE DEST

Lwp 3 2 — -
LWPI 3 2 - -
MoV 3 3 A* A
MOVB 4 4 A A
MPY 23 3 A -
MPYS 25 5 A -
NEG 3 3 A -
OR! 4 4 - -
RSET 9 1 - -
RTWPY 9/7 4 - -
S 4 4 A A
SB 4 4 A A
SBO 7 2 - -
SBzZ 7 2 — -
SETO 3 2 - -
SHIFT (SC#0) 5+SC 3 - -

(SC=0and bits 12-15 of WR =0} 23 4 - —

(SC =0 and bits 12-15 of WR0) 7+SC 4 - -
SM 12 7 A A
SoC 4 4 A A
SOCB 4 4 A A
SHIFT MULTIPLE (SC=0) 11+SC 5 A -

(SC+0) 13+SC 6 A -
STCR (CNT =0, serial) 43 3 A -

(CNT=1t07) 20+CNT 4 A -

(CNT=8) 27 4 A -

(CNT=9to0 15) 20+CNT 3 A -

(MSB R12=1, autoincrement R12) 10 5 A -

(MSB R12 =1, R12 not autoincremented) 10 4 A -
STST 3 2 - -
STWP 3 2 - -
SWPB 3 3 A -
szC 4 4 A A
SzCB 4 4 A A
T8 7 2 - -
TEST MEM BIT 26 3 A -
X8 2 1 A -
XOP (ST11=0) 14 7 A -
XOR 4 4 A -
Reset function 13 6 - -
Interrupt context switch 13 6 - -
MID opcode (Macrostore) 148 0 - -

(attached processor) 218 8 — —

* Replace the letter “*A"’ with appropriate value from Table A. The C and M values from Table A for the addressing mode used must be added to the C and M
values from this table.

$§Execution time does not include the time required by software or an attached processor to emulate the instruction.

YRTWP, when staying in Macrostore, takes seven machine states. When not in Macrostore or exiting Macrostore, RTWP takes nine machine states.

TABLE A
MACHINE MEMORY
STATES ACCESS
ADDRESSING MODE c M
WR (TsorTd = 0) 0 0
WRindirect (Tsor Td = 1) 1 1
WR indirect autoincrement (Ts or Td = 3) 3 2
Symbolic (Tsor Td = 2, SorD = 0) 1 1
Indexed (Tsor Td = 2, SorD = 0) 3 2

77

10.6.4

Bus Status Code Sequences

T

This section presents the sequence of bus status codes output by the microprocessor during each {1} in
tion, (2) interrupt trap, (3) MID trap and (4) transfer of control between the TMS99000 and an attached processor.

truction execu-

The TMS99000 microprocessors are microcoded machines. Each instruction in the instruction set is executed internally as
a sequence of microinstructions, the length of the sequence varying according to the particular instruction. Each microin-
struction cycle is minimally one machine state in duration. but can be extended with wait states by activating the READY
input. The sequence of machine states generated during the execution of a particular instruction depends upon the
opcode and the addressing modes used.

A typical instruction contains an opcode and addressing modes for up to two operands (source and destination). The
execution of an instruction can similarly be divided into two parts: (1) the derivation of the operands from the specified
addressing modes, and (2) the execution of the operation specified by the opcode. Since the same addressing modes are
common to many instructions, the portion of the execution sequence corresponding to each addressing mode can be
listed separately from the basic execution sequences for the various instructions. The listing of these sequences in separate
tables is done in this section for the sake of brevity.

Using this information, the user can reconstruct the entire sequence for a particular instruction by inserting the sequences
corresponding to the addressing modes into the basic sequence given for the instruction. The basic execution sequences
for the various TMS99000 instructions are presented in Table 14. In this table, the sequences corresponding to the source
and destination addressing modes are represented by the symbols <SRC > and <DST>, respectively. These symbols
must be replaced by the appropriate sequences from Tables 15and 16 to reconstruct the entire execution sequence for the
instruction with its particular addressing modes.

An example will help to illustrate this procedure. Consider the following add instruction:
A*R1+,R2

The addressing mode used to locate the source operand is register indirect autoincrement with R1. The addressing mode
used to locate the destination operand is register direct with R2. Table 14 presents a complete list of the machine states
generated during the execution of this instruction. Each state is identified by the bus status code output during that state.
Refer to Table 2 of Section 3for a list of all bus status codes and their mnemonics. The fetching of the A (add) opcode is not
shownin Table 14; instead, the next to the last state shown is the prefetch of the opcode for the instruction that follows the
add. This convention will be followed throughout Table 17. The prefetch of the opcode for the next instruction is
considered to be part of the execution sequence of the current instruction.

Using the data presented in Tables 18, 19 and 20, the information presented in the example of Table 17 is constructed as
follows. The basic execution sequence for the A {add) instruction is presented at the beginning of Table 18. Here the
execution sequences for the source and destination addressing modes are represented by the symbols <SRC > and
<DST>. These symbols are replaced by the appropriate addressing mode sequences from Table 18 to generate the
sequence seen in Table 17. The symbols Ns and Nd in Table 17 represent the number of machine cycles required to derive
the source and destination operands, respectively, and are replaced by the appropriate numbers from Table 18.

The execution sequences for all other TMS99000 instructions and operations shown in Table 17 are generated in similar
fashion.

TABLE 17— EXAMPLE INSTRUCTION SEQUENCE FOR AN A *R1+ ,R2

NUMBER BUS READ

OF
CYCLES

STATUS
CODE

NAME

OR
WRITE

COMMENT

Ns=4

0110
1001
0110
0001

ws
AUMS

ws

SOP

R

Fetch source operand from WR1
Internal operation

Increment WR1

Read source operand

0110

WS

Read dest’'n operand from WR2

0011
0110

1AQ
WS

So{m|mS |

Prefetch next instruction
Write sum to WR2

18

TABLE 18— SOURCE ADDRESSING MODE SEQUENCES

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT

Workspace Register Source Addressing, R

1 l 0110] WS ! R Get source operand from WR Ns =1
Workspace Register Indirect Source Addressing, *R

1 0110 WS R Get source address from WR

1 0001 SOP R Fetch source operand Ns =2
Workspace Register Indirect Autoincrement Source Address, *R +

1 0110 ws R Get source address from WR

1 1001 AUMS

1 0110 WS w Increment WR contents Ns =4

1 0001 sSoP R Fetch source operand
Symbolic (Direct) Source Address, @LABEL

1 0010 10P R Get source operand address

1 0001 SopP R Fetch source operand Ns =2
Indexed Source Address, @ TABLE(R)

1 0110 WS R Fetch base address from WR

1 0010 0P R Fetch index

1 1001 AUMS Ns = 4

1 0001 SOP R Fetch source operand
Workspace Register Destination Address, R

1 I 0110 WS] R T Get dest’'n operand from WR Nd =1
Workspace Register Indirect Destination Address, *R

1 0110 wWs R Get dest’n address from WR

1 0100 pop Fetch dest’n operand Nd =2
Workspace Register Indirect Autoincrement Destination Address, *R +

1 0110 ws R Get dest'n address from WR

1 1001 AUMS

1 0110 ws w Increment contents of WR Nd = 4

1 0100 pop R Fetch dest'n operand
Symbolic (Direct) Destination Address, @LABEL

1 0010 0P R Fetch dest’'n address

1 0100 DOP R Fetch dest’'n operand Nd = 2
Indexed Destination Address, @ TABLE(R)

1 0110 ws R Fetch base address from WR

1 0010 1oP R Fetch index

1 1001 AUMS Nd =4

1 0100 DOP R Fetch dest’'n operand

19

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES

NUMBER
OF
CYCLES

BUS
STATUS
CODE

NAME

READ
OR
WRITE

COMMENT

A, AB, MOVB, S, SB, SOC, SOCB, SZC, SZCB (See MOV sequence below)

Ns <SRC> Fetch source operand
Nd <DST> Fetch dest’n operand
1 0011 I1AQ R Prefetch next instruction
1 0100* DOP* R Save result at dest’'n address
MOV (move word)
Ns <SRC > Fetch source operand
Nd-1 <DST > Get dest’n address, but block fetcht
1 0011 IAQ R Prefetch next instructiont
1 0100* DOP* R Write operand to dest’'n address
SLA, SRA, SRC, SRL (if shift count is NOT zero)
1 0110 WS R Fetch source operand from WR
2 1001 AUMS Series of 2 consecutive AUMS cycles
CNT?t 1001 AUMS Repeat shift operation
1 0011 1AQ R Fetch next instruction
1 0110 ws W Save result in source WR
SLA, SRA, SRC, SRL (if shift count is zero}
1 0110 WS R Fetch source operand from WR
1 1001 AUMS
1 0110 WS R Fetch shift count from WRO
2 1001 AUMS Series of 2 consecutive AUMS cycles
CNTH 1001 AUMS Repeat shift operation
1 0011 1AQ R Prefetch next instruction
1 0110 ws w Save result in source WR
ABS (source operand in workspace register)
1 0110 ws R Fetch source operand from WR
1 1001 AUMS
1 0110 WS R Save result in source address
1 0011 IAQ R Prefetch next instruction
1 1001 AUMS
ABS (non-workspace source operand)
Ns—1 <SRC> Develop address of source operand
1 0000 SOPL R Fetch source operand (MPILCK active)
1 1000 AUMSL
1 0001 SOP R Save result in source address
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
Al, ANDI, ORI
1 0110 ws R Fetch source operand from WR
1 o010 (o] 4 R Fetch immediate operand
1 0011 1AQ R Prefetch next instruction
1 0110 WS w Save result in source WR

*Substitute WS bus status code if operand is in workspace register.
1The last state of the destination d derivation
$Number of cycles is equal to shift count.

is replaced by an instruction fetch.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES VCODE NAME WRITE COMMENT
C.CB
Ns <SRC> Fetch source operand
Nd <DST > Fetch dest’'n operand
1 0ot 1AQ R Prefetch next instruction
1 1001 AUMS
Cl
1 0110 WS R Fetch source operand from WR
1 0010 10P R Fetch immediate operand
1 0011 IAQ R Fetch next instruction
1 1001 " AUMS
AM, SM {double-word add and subtract)
1 0010 IoP R Fetch second word of instruction
1 1001 AUMS
Ns <SRC> Fetch MSW of source operand
Nd-1 <DST> Develop destination addresst
1 1001 AUMS Operand fetch is blocked
1 1001 AUMS
1 0001* SOP* R Fetch LSW of source operand
1 0100* DOP* R Fetch MSW of dest’'n operand
1 1001 AUMS
1 0100* DoP* w Write LSW of result to dest'n address
1 0100* DOP* R Fetch MSW of dest’n operand
1 0011 1AQ R Prefetch next instruction
1 0100* DOP* w Write MSW of result to dest’n address
B
Ns—1 <SRC> Get source addresst
1 1001 AUMS No fetch of source operand
1 0011 IAQ R Prefetch next instruction from effective source address
1 1001 AUMS
BIND
Ns <SRC> Fetch source operand
1 1001 AUMS
1 0011 1AQ R Prefetch next instruction from effective source address
1 1001 AUMS
BL
Ns <SRC> Fetch source operand
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0011 1AQ R Prefetch next instruction
1 0110 wSs w Save old PC in WR11
*Replace with WS bus status code if op disin k g

tBlock the read cycle in the last cycle of the source fetch sequence.

81

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
BLSK
1 0110 WS Fetch stack pointer from WR
1 1001 AUMS
1 0110 ws w Decrement stack pointer in WR
1 0010 IoP R Fetch branch address
1 0001 SOoP w Push return PC onto stack
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
BLWP
Ns <SRC> Fetch source operand (the new WP)
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0001* soP* R Fetch new PC
1 1100 WP New WP is output on address lines
1 0110 ws w Save old WP in WR13
1 0110 ws w Save old PC in WR14
1 0110 ws w Save old ST in WR15
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
CLR, SETO
Ns~-1 SRC> Get source addresst
1 1001 AUMS No fetch of source operand
1 0011 1AQ R Prefetch next instruction
1 0001* SoP* w Save result in source address
COC, czC
Ns <SRC> Fetch source operand
1 0110 ws R Fetch dest’n from designated WR
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
DIV
Ns <SRC> Fetch source operand
1 1001 AUMS
1 0110 wSs R Fetch MSW of dest’n operand from WR
IF OVERFLOW, GO TO LABEL 1 Check for divide by zero
1 0110 WS R Fetch LSW of dest'n operand from WR + 1
4 1001 AUMS Series of 4 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Is divisor <MSW of dividend?
18 1001 AUMS Series of 18 consecutive AUMS cycles
1 0110 ws w Save quotientin dest'n WR
1 0011 1AQ R Prefetch next instruction
1 0110 WS w Save remainder in dest'n WR + 1
LABEL 1: (GO HERE IF OVERFLOW)
1 0011 IAQ R Prefetch next instruction
1 1001 AUMS

*Substitute WS bus status code if opet

P
1sin

KSDBH g

tBlock the read in the last cycle of the source fetch sequence.

82

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
DiVS
Ns <SRC> Fetch source operand
i 1001 AUMS
1 0110 WS R Fetch LSW of dest’n operand from WR1
1 1001 AUMS
1 0110 WS R Fetch MSW of dest’n operand from WR0Q
3 1001 AUMS Series of 3 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Check for divide by zero
3 1001 AUMS Series of 3 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Is |divisor| < |dividend|?
20 I 1001 AUMS Series of 20 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Does unsigned quotient overflow its 15-bit boundary? if so,
set ST4,
1 0110 ws w Save quotient in WR(Q
1 (L)} I1AQ R Prefetch next instruction
1 0110 WS w Save remainder in WR1
LABEL 1: (GO HERE IF OVERFLOW)
1 0011 IAQ R Prefetch nextinstruction
1 1001 AUMS
DEC, DECT, INC, INCT, INV, NEG, SWAPB
Ns <SRC> Fetch source operand
1 0011 1AQ R Prefetch next instruction
1 0001* soP* R Save result in source address
LREX, CKOF, CKON, RSET (external instructions)
4 1001 AUMS Series of 4 consecutive AUMS cycles
2 1011 1/0 w 1/0 cycle is minimum 2 states long
1 1101 ST Output new status on address bus
1 0011 I1AQ R Prefetch next instruction
1 1001 AUMS
IDLE (external instruction)
3 1001 AUMS Series of 3 consecutive AUMS cycles
2 on 110 w 170 cycle is minimum 2 clocks long
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
LDCR (parallel load CRU)
Ns <SRC> Fetch source operand
1 0110 ws R Get CRU base address from WR12
2 1001 AUMS Series of 2 consecutive AUMS cycles
2 1001 1/0 w 1/0 cycle is minimum 2 states long
1 0011 1AQ R Fetch next instruction
1 1001% AUMS1 Increment WR12 if necessary

*Substitute WS bus status code if operand is in workspace register.
*substitute WS bus status code and a write cycle if WR12 is post-incremented by 2.

83

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
LDCR (serial load CRU)
Ns <SRC> Fetch source operand
1 0110 WS R Fetch CRU base address from WR12
4 1001 AUMS Series of 4 consecutive AUMS cycles
2* CNT? 1011 1/0 w 1/0 cycle is minimum 2 states long
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
LDD ANDLDS
1 1001 AUMS
1 1001 AUMS Update internal LDD and LDS flags
1 1001 AUMS
MID trap follows
Ll
1 0010 1opP R Fetch immediate operand
1 0011 1AQ R Fetch next instruction
1 0110 ws w Save operand in specified WR
LIMI
1 0010 0P R Fetch immediate operand
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0011 1AQ R Prefetch next instruction™
1 1001 AUMS
LST
1 0110 ws R Fetch operand from WR
3 1001 AUMS Series of 3 consecutive AUMS cycles
1 1101 ST Output new status on address bus
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
LWP
1 0110 WS R Fetch operand from WR
1 0011 1AQ R Fetch next instruction
1 1100 WP Output new WP on address bus
LWPI
1 0010 0P R Fetch immediate operand
1 0011 1AQ R Fetch next instruction
1 1100 WP Output new WP on address bus
MPY
Ns <SRC> Fetch source operand
1 0110 ws R Fetch dest'n operand from WR
18 1001 AUMS Series of 18 consecutive AUMS cycles
1 0110 ws w Save MSW of resultin WR
1 0011 1AQ R Fetch next instruction
1 0110 wSs w Save LSW of resultin WR + 1

tThe number of cycles is specified in the count field of the opcode.
*The new mask controls interrupts.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT

MPYS

Ns <SRC> Fetch source operand

1 1001 AUMS

1 0110 WS R Fetch dest’'n operand from WR

19 1001 AUMS Series of 19 consecutive AUMS cycles

1 0110 wSs w Save MSW of resultin WR

1 0011 1AQ R Fetch next instruction

1 0110 WS w Save LSW of resultin WR +1
RTWP (return from subroutine in main memory)

1 1001 AUMS

1 0110 WS R Fetch new PC from WR14

1 0110 ws R Fetch new ST from WR15

1 0110 WS R Fetch new WP from WR13

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 1101 ST Output new ST on address bus

1 0011 I1AQ R Prefetch next instruction

1 1100 WP Output new WP on address bus
RTWP (return from using opcodes >380, > 382, or >384

5 1001 AUMS Series of 5 consecutive AUMS cycles

1 0011 1AQ R Prefetch next instruction

1 1001 AUMS
Jump Instructions

1 1001 AUMS

1 0011 1AQ R Prefetch next instruction

1 1001 AUMS

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
SLAM, SRAM
1 0010 iopP R Fetch second word of opcode -
1 1001 AUMS
Ns <SRC> Fetch MSW of source operand
IF SHIFT COUNT IS ZERO, GO TO LABEL 1
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0001* sop* R Fetch LSW of source operand
2 1001 AUMS Series of 2 consecutive AUMS cycles
CNTYt 1001 AUMS Repeat shift operation
1 0001* SOP* w Save LSW of source operand
1 0011 1AQ R Fetch next instruction
1 0001* sopP* w Save MSW of source operand
LABEL 1: (GO HERE IF SHIFT COUNT IS ZERO)
1 1001 AUMS
1 0110 wWs R Fetch shift countin WR0
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0001* SOP* R Read LSW of source operand
1 1001 AUMS
IF SHIFT COUNT IN RO IS ZERO, GO TO LABEL 2
1 1001 AUMS
CNTTt 10011 AUMST Repeat shift operation until done
1 0001* sSoP* w Write LSW of result to source address
1 0011 1AQ R Fetch next instruction
1 0001* sopP* w Write MSW of result to source address
LABEL 2: {GO HERE IF SHIFT COUNT IN WRO IS ZERO)
1001 AUMS
1 0001* sopP* w Write LSW of result to source address
1 0011 I1AQ R Prefetch next instruction
1 0001* SopP* w Write MSW of result to source address

*Substitute WS bus status code if operand is in workspace register.

tNumber of cycles is equal to shift count.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER
OF
CYCLES

BUS
STATUS
CODE

NAME

READ
OR
WRITE

COMMENT

STCR (parallel store CRU)

Nst

NOTE: SOURCE OPERAND IS NOT FETCHED IF WORD TRANSFER

Fetch source operand if byte transfer

1 0110 ws R Read /0 base address from WR12
2 1001 AUMS Series of 2 consecutive AUMS cycles
2 1011 170 R 1/0 cycle is minimum 2 states long
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 00011 SOPt w Save result in source address
1 0011 IAQ R Prefetch next instruction
1 10011 NOPt Increment WR12 if necessary
STCR (bit-serial store CRU)
Nst Fetch source operand if byte transfer
1 0110 ws R Fetch 1/0 base address from WR12
5 1001 AUMS Series of 5 consecutive AUMS cycles
28CNT* 1011 170 R i/0 read takes min. 2 states/bit
3 1001 AUMS Series of 3 consecutive AUMS cycles
IF8 OR 16 BITS TRANSFERRED, GO TO LABEL 1
? 1001 AUMS Repeat cycle 8-N for byte or 16-N for word, where N =
number of bits
LABEL 1:
1 0011 IAQ R Fetch next instruction
1 00013 SOPS§ w Save result in source address
SBO, SBZ (single-bit CRU instructions)
1 1001 AUMS
1 0110 ws R Fetch |/0 base address from WR12
1 1001 AUMS
2 1011 1/0 w 1/0 cycle is minimum 2 states long
1 0011 1AQ R Fetch next instruction
1 1001 AUMS

*Number of cycles is equal to count field from STCR opcode.

tSubstitute WS bus status code if WR12is post-incremented by 2.

+If source operand is word rather than byte, fetch of operand is replaced by AUMS cycle.

§Substitute WS bus status code if operand is in workspace register.

87

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
T8
1 1001 AUMS
1 0110 Ws R Fetch 1/0 base address from WR12
1 1001 AUMS
2 1011 1/0 R 1/0 cycle is minimum 2 states long
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
TMB, TCMB, TSMB (source operand in workspace register)
1 0010 0P R Fetch second word of instruction
1 0110 ws R Fetch source operand from WR
2 1001 AUMS Series of 2 consecutive AUMS cycles
Bit displacement 1001 AUMS Shift target bit into position
2 1001 AUMS Series of 2 consecutive AUMS cycles
116-bit displacementt 1001 AUMS Restore shifted bit to original position
1 1001 AUMS
1 0110 ws w Write result to WR
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
TMB, TCMB, TSMB (non-register source operand)
1 0010 10P R Fetch second word of instruction
Ns—1 <SRC> Get source address (see next cycle)
1 0000 SOPL R Fetch source with MPILCK active
2 1000 AUMSL Series of 2 consecutive AUMSL cycles
Bit displaf;ement'f 1000 AUMSL Shift target bit into position
2 1000 AUMSL Series of 2 consecutive AUMSL cycles
16-bit displacement# 1000 AUMSL Restore shifted bit to original position
1 1000 AUMSL
1 0001 SOP w Save results and deactivate MPILCK
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS

1t Number of cycles is equal to the bit number plus one.
¥ Number of cycles is equal to 16 minus the bit number.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
X
Ns <SRC> Fetch source operand (target opcode)
1 1001 AUMS
Execute target opcode
STST, STWP
1 1001 AUMS
1 0011 IAQ R Fetch next instruction
1 0110 WS W Save result in WR
XOP
Ns-1 <SRC> Get source operand address {see next)
1 1001 AUMS Block fetch of source operand
1 1101 ST Output all zeros on address bus
1 1001 AUMS
1 0101 INTA R Fetch new WP from vector
1 1001 AUMS
1 1100 wP Output new WP on address bus
1 1001 AUMS
1 0110 ws w Save source address in WR11
1 0101 INTA R Fetch new PC from vector
1 0110 ws w Save old WP in WR13
1 0110 ws w Save old PCin WR14
1 0110 ws w Save old ST in WR15
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
XOR
Ns <SRC> Fetch source operand
1 0110 ws R Fetch dest’n operand from WR
1 0011 1AQ R Fetch next instruction
1 0110 WS w

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONCLUDED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
EVAD (This instruction is available only in Macrostore)
Ns <SRC>* Fetch source operand
1 1001 AUMS
1 1001 AUMS Save Macrostore PC in WR4 of Macrostore
1 1001 AUMS Fetch user's PC from WR14 of Macrostore
2 1001 AUMS Series of 2 consecutive AUMS cycles
IF TARGET OPCODE SOURCE ADDRESS IS *R+, GO TOLABEL 1
Ns-1 <SRC> Get source address for target word
GO TO LABEL 2
LABEL 1:
1 0110 ws R Fetch source address from user's WR
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1001 AUMS Save address of user's WR in WR10
1 1001 AUMS
LABEL 2:
{F TARGEY OPCODE DESTINATION ADDRESS IS *R+, GO TO LABEL 3
Nd-~1 <DST> Get dest’'n address for target word
GO TO LABEL 4
LABEL 3:
1 0110 WS R Fetch dest’'n address from user's WR
1 1001 AUMS Save address of user’s WR in WR9
LABEL 4:
3 1001 AUMS Series of 3 consecutive AUMS cycles
1 1001 AUMS Save updated user PC in WR 14 of Macrostore
1 1001 AUMS Restore Macrostore PC
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1001 AUMS Save dest’n address in WR7 of Macrostore
1 1001 AUMS Fetch next instruction
1 1001 AUMS Save source address in WR8 of Macrostore

* All cycles output AUMS bus status code.

TABLE 20 — INTERRUPT AND MACROSTORE TRAP SEQUENCES

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
INTERRUPTS o o o
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1101 ST Output aii zeros on address bus
1 0101 INTA R Fetch new WP from interrupt vector
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0101 INTA R Fetch new PC from interrupt vector
1 1100 WP Output new WP on address bus
1 0110 ws w Save old WP in WR13
1 0110 wSs w Save old PCin WR14
1 0110 ws w Save old ST in WR15
1 0011 IAQ R Fetch next instruction
1 1001 AUMS
TRAP TO MACROSTORE (MID trap)
1 1001 AUMS
1 1110 MID Check for attached processor
1 1001 AUMS
1 1001 AUMS Save contents of main IR in WRS
1 1001 AUMS
1 1001 AUMS If MID trap is due to 2nd word of instruction, save PC-2in WR14
1 1001 AUMS Save LDS and LDD flags and first word of 32-bit opcode in WR3
1 1001 AUMS Read Macrostore PC from vector
1 1001 AUMS)
1 1001 AUMS Save user's WP in WR13
1 1001 AUMS Save user's PCin WR14
1 1001 AUMS Save user’s ST in WR15
2 1001 AUMS Series of 2 consecutive AUMS cycles

91

TABLE 21 — ATTACHED PROCESSOR INTERFACE SEQUENCES

NUMBER BU READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
|99000 TRANSFERS CONTROL TO ATTACHED PROCESSOR (MID trap)
1 1001 AUMS
1 1110 MID Check for attached processor
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1101 ST Output all zeros on address bus
1 0101 INTA R Fetch WP from level-2 vector
3 1001 AUMS Series of 3 consecutive AUMS cycles
1 1100 WP Output new WP on address bus
1 0110 WS w Save old WP in WR13
1 0110 ws w Save old PCin WR14
1 0110 ws w Save old ST in WR15
1 11 HOLDA Release bus to attached processor
ATTACHED PROCESSOR RETURNS CONTROL TO 99000
1 "mnm HOLDA Last state of hold cycle
1 0110 WS R Fetch new PC from WR14
1 0110 ws R Fetch new ST from WR15
1 0110 ws R Fetch new WP from WR13
1 1101 ST Output new ST on address bus
1 0011 1AQ R Fetch next instruction
1 1100 wP Output new WP on address bus
ADVANCE INFORMATION
This document contains information on 92

a new product. Specifications are subject

to change without notice.

1.

TMS99105A/TMS99110A PRELIMINARY ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE
NOTED}

Supply voltage, VogiseeNote 1)ot -0.3t07V
AINPUEVOIAGES - .« . oottt r i -0.3t0o20V
OULPUL VORBgES « « « o o vt e e e e v a et -03to7V
Continuous power dissipationl 1000 mW
Operating free-air teMPeratureo v vu v e n v e v n et e 0°Cto70°C

T Stresses beyond those listed under’’Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and func-
tional operation of the device at these or any other conditions beyond those indicated in the ‘‘Recommended Operating Conditions” section of this
specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 1: All voltage values are with respect to Vgg

11.2 RECOMMENDED OPERATING CONDITIONS
PARAMETER MIN NOM MAX | UNITS
Supply voltage, VcC 4.75 5 b5.25 \
Supply voltage, Vs - 0 v
High-leve! input voltage, V4 (all inputs except CLKIN) 2 Vee+1 v
High-level input voltage, V|H.(CLKIN} 3.5 Vee+1 v
Low-level input voltage, V_ (all inputs except CLKIN) : .) -1 0.8 v
Low-level input voltage, V)i (CLKIN) 0.2 \4
High-level output current, oy (All outputs) 400 uA
Low-level output current, lgg (all outputs) 2% mA
Operating free-air temperature, TA o] 70 °C

$0Output current of 2 mA is sufficient to drive 5 low-power Schottky TTL loads or 10 advanced low-power Schottky TTL loads (worst case).

11.3 ELECTRICAL CHARACTERISTICS OVER RECOMMENDED FREE-AIR TEMPERATURE (UNLESS
OTHERWISE NOTED)
PARAMETER TEST CONDITIONS T MIN TYPF MAX |UNIT

VOoH High-level output voitage Vee=MIN, loL=MAX 2.4 v
Low-level output voltage _ _

VOL 4 except BST(1-3), RAW, MEM Vee=MIN, loL=MAX 05|V
Low-level output voltage, _ _

VoL (gsT(1-3), RIW, MEM Vee=MIN, loL=MAX 06| Vv
Tristate (high-impedance) output Vpo=24V 20

| =

0 current (off) Vee=MAX Iy =o0av 20| ¥

[Input current V)=Vsgg to Vcc 20 | pA

Icc Supply current Vee=MAX 120 mA
Input capacitance (all inputs

C 1

' except address/data lines) ® oF

Cps Address/data line capacitance f=1 MHz, all other pins at 0 V 25 pF
Output capacitance (except

C 10 1 F

° address/data lines) "

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
Al typical values are at Ve = 5V, Tp = 25°C.

1.4

11.4.1

CLOCK CHARACTERISTICS

The TMS29000 has an internal oscillator and 4-phase clock generator controlied by an external crystal or resistor-capacitor
combination. Alternatively, the user can directly inject a frequency source into the XTAL?1 input. The period of the
frequency source must be one-fourth the desired machine state time.

Internal Oscillator

The internal oscillator is enabled by connecting a crystal across XTAL1 and XTAL2. The machine state time, t_, is four
times the crystal oscillator period, 1/f,. The crystal should be a fundamental series-resonant type. Figure 33 presents the
circuit configuration for this mode of operation.
ADVANCE INFORMATION
93 This document contains information on
a new product. Specifications are subject
to change without notice.

l TMS99105A |
TMS99110A
XTAL1/CLKIN XTAL2
crystal
PR .
C1 Cc2

NOTES: 1. The crystal should be a fundamental seriesresonant type operating at four times the machine state frequency.
2. C1and C2 represent the total capacitance on these pins, including strays and parasitics.

FIGURE 33 — INTERNAL OSCILLATOR

PARAMETER TEST CONDITIONS MIN TYP MAX [UNIT
Crystal frequency, fy 0-70°C 24 MHz
Ct,Cc2 0-70°C 5 pF

11.4.2 External Clock

An external clock of frequency f, may be connected to the XTAL1/CLKIN in place of a crystal or RC combination. The
period of the CLKOUT output signal will be 4/f . Figure 34 shows the circuit configuration when an external clock is used.

PARAMETER MIN NOM MAX | UNIT
foxt External source frequency 12 24 | MHz
tcd CLKIN cycle time 41.25 83.33 ns
trg CLKIN rise time (see Note 1) 4 10 ns
e CLKIN fall time (see Note 1) 4 10 ns
twH1 CLKIN high-level pulse width teg/2-%p ns
twi1 CLKIN low-level pulse width _tc¢/2-tf¢ ns

Note 1: CLKIN rise and fall times are a function of V,,; and V. For the times shown the Vi and Vy_levels are as given under ‘‘Recommended Operating Conditions.” If a
maximum 5 ns rise and fall time can be achieved, then the Vin and Vy_leveis may be standard levels 0f 2.4 V and 0.4 V respectively.

+5V

XTAL1

TMSS9105A
TMS99110A

Crystal Oscillator nc| xTAL2

FIGURE 34 — EXTERNAL OSCILLATOR

ADVANCE INFORMATION
This document contains information on %4
a new product. Specifications are subject
to change without notice.

1.5 TIMING REQUIREMENTS OVER RECOMMENDED OPERATING CONDITIONS
PARAMETER MIN NOM MAX | UNIT
tsy1 READY setup time prior to falling edge of CLKQUT 35 ns
th1 READY hold time after falling edge of CLKOUT 0 ns
tsu2 Data setup time prior to falling edge of CLKOUT 30 ns
th2 Data hold time after falling edge of CLKOUT 0 ns
tsu3 INTREQ, RESET, APP setup time prior to falling edge of CLKOUT 40 ns
tsud HOLD setup time prior to falling edge of CLKOUT 80 ns
th3 INTREQ, RESET, APP, HOLD hold time after falling edge of CLKOUT i5 ns
| tacc Access time, address valid to data valid at data setup time 3tc2/4-40 ns
tded RD low until valid data required 1c2/2-63 ns
11.6 SWITCHING CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tc2 CLKOUT cycle time (f(x) = crystal freq) 44c1 or 4/x ns
tr2 CLKOUT rise time 10 15 ns
1§2 CLKOUT fall time 10 15 ns
twH2 CLKOUT high-level pulse width tg2/2-tr2 ns
—t-;n_z CLKOUT low-level pulse width tc2/2-t§2 ns
twH3 ALATCH pulse width high tc2/4-12 ns
td1 Delay time, reference line to ALATCH low te2/4+13 ns
t42 Delay time, ref line to ALATCH high 11 15 ns
t43 Delay time, ref line to MEM, BST, RW 13 15 ns
address, PSEL valid
e PeIaY time, ALATCH low to address, PSEL 10 15 20 ns
invalid
tdz1 Delay time, ALATCH to address hi-z 20 30 35 ns
_t:,r, Delay time, ref line to start of WE invalid CL =. 100 pF tc2/4 ns
146 Delay time, ALATCH low to start of RD invalid (See Figure 35} 10 24 30 ns
tq7 Delay time, CLKOUT low to WE, RD high 15 30 ns
tds Delay time, ALATCH low to data valid 20 30 35 ns
tdg Delay time, ref line to WE vald tc2/4+13 tc2/4+20 ns
td10 Delay time, WE/IOCLK high to data invalid tc2/4-30 ns
Delay time, CLKOUT low to data, PSEL,
911 sy, MEM, RW invalid tc2/4+5 ns
Delay time CLKOUT low to WE/IOCLK, RD |
td12 inactive 0 ns
tdrde Delay time ref line to RD low tc2/4+40 ns
tdz2 Delay time, ref line to R/W hi-z tg2/4 +25 ns
tdz3 Delay time, ref line to ALATCH hi-z tc2/4+25 ns
td(ray) Delay time, ref line to ALATCH invalid tc2/4 ns
Delay time, ALATCH low to address, MEM,
‘413 gsT, RD, WE, R/W invalid 10 ns
tara Ile.lay_tlme r_e_f line to address, MEM, BST, 1e9/4+20 ns
RD, WR, R/W invalid

ADVANCE INFORMATION

This document contains information on
a new product. Specifications are subject
to change without notice.

? +v°c

Test point 2.4K

Diode
From output O-

under test l 9 #
T

>
24K

AW

Diodes

FIGURE 36 — SWITCHING TIMES LOAD CIRCUIT

CLKIN

-»| a2 |1
11 11
11

[

| :t twl2 >
CLKOUT I‘

! I
| *———— twH2 ————|

|
[}
I |
(|
| a— tc2 »>|

NOTES: (1) There is no time relationship implied or specified between the input clock and the output ciock.
(2} Al timing reference points are 10% and 90% points.

FIGURE 36 — CLOCK TIMING PARAMETERS

COMMON SIGNALS
n clock cycles
l-—tczl4—*| |' 'l {n— 1 wait states)

| L
CLKOUT_\ | / |
-

tdz_“r-n"—_tM l i1 ""i lo—tr2
ALATCH ﬂ I #
H3
" —l l-—tfz "'—':"Stﬂ
L]
READY, XXXXXXXY)OO(XXX L XXX XX
— jew3z | —= jo—th1
[1 |
i:‘z’;l“,:z;?vlv' I K A valid code | | k
! e t o 11 1
MEMORY READ CYCLE | acc |
I '-——of-td 1 11 !
: | 2

WE

)
3222’) address x valid data
| |

N N

INTERNAL ALU CYCLE =

R
322‘\’ | undefined X undefined x

reference
line

FIGURE 37 — MEMORY AND INTERNAL CYCLE TIMING PARAMETERS

All timing reference points are 10% and 90% points.

97

COMMON SIGNALS

r- tc2/4 -|

' |
CLKOUT | |

tdz": [~ — r—tfz

ALATCH

READY

BST(1-3)
MEM.R/W

1/0 INPUT CYCLE

ADDR/
DATA

WE/IOCLK

/0 OUTPUT CYCLE

ADDR/
DATA

WE/IOCLK

th:?—[-—-(|

"V.V \A\/ v’v.v VAN VW AAA VNV VY VY VWA v.vOV.v’v v’v \\N \/ v.v.v.v.'v’"
ORGSO KX
|

tc2/4 n clock cycles
'- - I l {n wait states)

|
|
! l""s‘“_’!

le—st-t93 | th1—l je—

I 1 ! | I

] & | valid code) K
I fo—td11—]

T i e e

| tda— | : be—tsu2—=

|

; S

|

: ! | —-2 P-td12

| | l l

| : | !-—td1 1-+

| e | T

| address X | valid data ;K

r—tds—ﬂ

o Py}

|

|

|

| |
e

be-

-
! td5—=| |
reference P- |
line reference l'-td 12
line

FIGURE 38 — /O CYCLE TIMING PARAMETERS

All timing reference points are 10% and 90% points.

r—stczm_—-:
CLKOUT ! ’ . R k

| [ptmns
INTREQ, !
IC(0-3), X
ﬁéE—I._ 200000
NMIAPP | l . | '
I su4—.|
nop WOROOOOOOOLO0 ! '
A‘A’A‘A‘A‘A“’A’A’A’A’A’A’-
reference
line

NOTE: The CLKOUT edge at which each of the input signals is sampled is defined in the section pertaining to that signal.

FIGURE 39 — INTERRUPT, HOLD AND APP TIMING PARAMETERS

F tc2 B
|

|
CLKOUT | / \ I /
| |'—td23——'I
ALATCH ﬂ

[
BST(1-3), | o taa1 _’|
I

/ Im— hi-z==
|
MEM, RD, | hi
WE/CRUCLK, _l/ -td13-+| -z

trav—=

T

ADDRESS, RIW |
; tdzz =i
reference reference
line line

FIGURE 40 — HOLD CYCLE TIMING PARAMETERS
Ali timing reference points are 10% and 90% points.

CLKOUT

]

|

|

I

|

1

|

|

hi-z l
ALATCH - i]
|
| i
IQ— ta -.I

|

|

MEM, BST(1-3), |
WE/IOCLK, hiz | |

RD, R/W, ' H valid

ADDRESS l
' :
| 1
|t

|

reference
line

FIGURE 40 — HOLD CYCLE TIMING PARAMETERS (CONCLUDED)

All timing reference points are 10% and 90% points.

100

TMS99000 MECHANICAL SPECIFICATIONS

51,31 (2.020) MAX

®

|

12.
12.1 TMS99105A/TMS99110A — 40-PIN CERAMIC PACKAGE
INDEX:
DoT
13 %
4 15.24+0.254
(0.600:0.010) | 0,508 (0.020) MIN

|

“PLANE T

1

"

0,254 (0.010) NOM—"
0,457+ 0.076
(0.018+0.003)

IIITIII
LL——LM SPACING 2,54 (0.100) T.P.

g

T

{See Note a)

;

{0.050+0.010)

10 (0F (1N [l 1) 4,70 (0.185) maX

T
1,270,254 —“

3
3.81 £ 0,762 (0.150 + 0.030)
| ¢

—0.813 (0.032) NOM

e— 1,270,508
(0.0650 + 0.020)

NOTES: a. Each pin centerline is located within 0,254 (0. 010) of it: true longitudinal podtion
y in b

b. AN linear dimensions are in milki

govern.

hes. Inch di

and p

TMS99105A/TMS99110A — 40-PIN PLASTIC PACKAGE

53,09 (2.090) MAX

21

mimimimisisisislaimisisisiolslsl=lsls)

)

J S SN NS N NN N NG S D NN D NN N § A G O UN | SIS | W) RO |

-®

@

12.2
EITHER
INDEX :
15.24+0,254 &
(0.600+0.010)
0.508 {0.020)
MIN
105 — SEATING PLANE —g—
%
0.457:0,076
0.279 + 0,076
10.011 = voosn_.\ ©.018:0.003 1"

PIN SPACING 2,54 (0.100) T.P. -

(See Note a)

¥
|5.08 (0.200} MAX

3.17 {0.125) MIN
L ®
10.838 (0.033) MIN

2.41 (0.095)
1,40(0.055)

B

1.52 {0.060) NOM

NOTES: a. Each pin centerline is located within 0,254 (0.010) of its tnn longitudmd pomion

b. All linear dimensions are in milli

govern.

Inch di

and p

101/102

APPENDIX A
TMS99105A SUPPLEMENT

103

A1

TMS99105A DESCRIPTION

The TMS99105A is the basic member of the TMS99000 microprocessor family. The TMS99105A offers the same

features as described in Sections 1 through Section 12. The only feature not implemented on the TMS99105A is on-
chip Macrostore. However, external Macrostore may be utilized for user-implemented functions and instructions.

TMS99105A MACROSTORE OPERATION

The TMS99105A may utilize external Macrostore by placing the TMS99105A in prototyping mode (see Section
7.2.4.2). If no external Macrostore is to be implemented in the system, it is recommended that the TMS99105A be
placed in baseline mode (Section 7.2.4.3). If no external Macrostore is implemented on the TMS99105A and the stan-
dard mode or prototyping mode is selected, the occurrence of a MID opcode will result in indeterminate operation.
This is due to the fact that a Macrostore vector will occur to non-existent Macrostore memory (see Section 7.3)
and potentially cause a system lockup.

104

APPENDIX B
TMS99110A SUPPLEMENT

105

TMS99110A DESCRIPTION

e mon a4 A A rannnAA~

The TiViS991 10A 16-bit microprocessor is a powerfui member of the TMSS3000 family that impiements 12 singie
precision floating point instructions, 2 memory mapper control instructions and a 32 X 32 signed integer multiply in-
struction. These powerful instruction set enhancements are implemented via the on-chip Macrostore memory space.
They are additions to the instruction set described in Section 10.

B.1 TMS99110A MACROSTORE OPERATION
With the instruction set extensions of the TMS99110A implemented in Macrostore, it is required that the
TMS99110A be generated in standard mode (see Section 7.2.4.1). If either the prototyping mode or baseline
mode of operation is selected, the instruction set extensions described in this section will not be operational.
B.2 TMS99110A INSTRUCTION SET EXTENSION SUMMARY

The TMS99110A implements the instructions listed Table B.1 in addition to those listed in Section 10. Note that these
instructions are operational only when the TMS99110A is operated in the standard mode.

TABLE B.1 — TMS99110A INSTRUCTION SET EXTENSION SUMMARY

MNEMONIC DESCRIPTION OPERATION*
LDD Long Distance Source Update internal LDD flag
LDS Long Distance Destination Update internal LDS flag
AR Add Real FPAC +(SA,SA + 2) = FPAC
SR Subtract Real FPAC - (SA,SA +2) =~ FPAC
MR Muitiply Real (SA,SA+2) * FPAC —~ FPAC
DR Divide Real FPAC / {SA,SA+2) - FPAC
LR Load Real (SA,SA +2) = FPAC
STR Store Real FPAC —» (SA,SA +2)
NEGR Negate Real — FPAC - FPAC
CR Compare Real (SA,SA +2) — (DA,DA + 2) set status
CIR Convert Integer to Real Convert (SA) — FPAC
CER Convert Extended Integer to Real Convert FPAC — FPAC
CRI Convert Real to Integer Convert FPAC to integer - FPAC
CRE Convert Real to Extended Integer Convert FPAC to ex. integer = FPAC
mmt Muitiply Multiple (32 x32) (SA,SA+2) * (DA,DA +2) ~
(DA,DA-2,DA+4,DA+6

*Floating point accumulator {FPAC) is designated as workspace registers 0 and 1 of the current workspace.

T MM is not a floating point operation but is an addition to the TMS99110A instruction set.

B.3 TMS99110A MEMORY MAPPER CONTROL INSTRUCTIONS
The LDD and LDS instructions are provided for use in controlling a 16-register memory map file. These instructions are
implemented on the 99110 only.
These mapper instructions are intended to support the use of the TIM99610 (SN74LS610) memory mapper (see the
SN74L.5610 data sheet).
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: [OPCODE [0 0 0 0 0 0 |
OPCODE
MNEMONIC 0123 4567 89 MEANING
LDS 00000111 10 Long Distance Source
LDD 0000 0111 11 Long Distance Destination

The LDD and LDS instructions permit data to be accessed through the user’s memory map while in the supervisor
mode. The PSEL pin will be inverted during the source {(if LDS) or destination (if LDD) operand access cycles of the
following instruction, unless the addressing mode is register direct. When register direct addressing (Tg = O or
Tp = 0) is used for the source or destination operand fetch, PSEL is not altered.

106

Listed below are the effects when an LDD or LDS instruction follows an LDS or LDD instruction. In general, only the first
two cases, LDD followed by LDS or LDS followed by LDD, are considered useful:

LDD —LDS: Both the source and destination memory cycles of the instruction that follows are long distance.
LLDS—LDD: Same as LDD—LDS.

LDS —LDS: The first LDS has no effect; the source memory cycles of the instruction that follow are long distance.
LDD ~LDD: The first LDD has no effect; the destination memory cycles of the instruction that follow are iong
distance.

interrupts are inhibited untii afier the next instruction.

An attempt te execute a long-distance instruction while in user mode (ST7 = 1) will be flagged as a privileged opcode
violation.

The LDS or LDD instruction has no effect if the source or destination addressing mode of the target instruction is
workspace register direct.

If the instruction to be long distanced is interruptible, the long distance information can be recovered upon return from the
interrupt. An example of an interruptible instruction is a block move with multiple source and destination operands to
which long distancing is applied. Typically, a checkpoint or loop count register keeps track of the number of moves
completed. If long distancing is not applied to either operand, the normal procedure, when an interrupt occurs, is to store
the loop count and other pertinent instruction status in a checkpoint register and decrement the program counter. After
the interrupt is serviced, execution continues from where it stopped. After the instruction is completed, the check point
register is set to — 1 or some other value to indicate that the instruction will be executed for the first time when it is next
encountered.

Several features have been incorporated into the LDD and LDS instructions to facilitate recovery from an interrupted
instruction when an LDD and/or an LDD instruction is active. Both the LDD and the LDS instructions save the address
plus 2 (main memory} of the first LDD or LDS in a possible sequence of LDD s and/or LDS s. Any Macrostore imple-
mented instructions, which could be long distanced and interrupted, must not accidentally destroy this data.

The three most significant bits of Macrostore location >0006 (WR3 if WP =0) are long distance status information as
shown in the following table. The fact that a long distance instruction is active may be determined by comparing the
contents of >0008 to the value > EQ00. If the comparison is greater than or equal, then the long distance instruction is not

active.
LONG-DISTANCE
FLAGS
012 MEANING
111 No long distancing in effect
110 Long distance source
101 Will never occur
100 Long distance source*
011 Long distance destination
010 Sequence: 1) LDD, 2) LDS (order is significant)
001 Will never occur
00O Sequence: 1) LDS, 2) LDD, or see Note.t

* A sequence of two LDS instructions has been encountered. If emulating the 990/12 version of LDS, the source operand access of the second LDS is controll-
ed by the first LDS to be long distance.

1t The sequence LDS, LDD, LDS has been encountered. If emulating the 390/12 version of LDD and LDS, then the source operand access of the LDD is controll-
ed by the first LDS to be long distance.

The procedure for handling an interruptible instruction is relatively simple due to the information stored in locations > 0004
and >0006 (WR2 and WR3 if WP =0). When an interrupt is detected by using one of the jump on interrupt instructions,
first do all necessary clean-up (such as updating the checkpoint register{s}), and compare Macrostore location >0006 to
value >EO00 to determine if a long distance instruction was active. If no long distance is active, then load the contents of
WR14 (used to return back to main memory) with the address of the start of the instruction. It may be necessary to save the
contents of WR14 on entering Macrostore for this purpose because WR14 may be modified by executing the Macrostore
routine or by an EVAD instruction. If a long distance is active, then the contents of location >0004 must be decremented
by 2 and then loaded into WR 14 so that after returning with an RTWP (>0380), the PC will point to the start of the string of
LDDs and/or LDSs. Since an interrupt caused the Macrostore routine to be exited, the interrupt vector will be taken
immediately upon return to main memory via the RTWP instruction. Upon returning back to Macrostore from the
interrupt(s), the PC will be initialized with the value at the time of Macrostore exit thus restarting the Macrostore routine.

107

The long-distance flags are automatically cleared if the exit from Macrostore is performed by executing the >0380
or>0382 form of RTWP but are NOT cieared if >0384 is executed. The iong-distance fiags are aiso automaticai-
ly cleared after the instruction following the LDD or LDS has been completed. Note that the long-distance flags
have no effect on the PSEL output during Macrostore accesses. PSEL always represents the complemented value
of ST8 when executing out of Macrostore memory space. Note if an SOP or DOP bus status code is output while

in Macrostore, it will cause PSEL to flip if the corresponding LDD or LDS is active.

TMS99110A FLOATING POINT INSTRUCTIONS

The floating point package of the TMS991 10A provides floating point operations. The general method is to load the
Floating Point Accumulator (FPAC — RO,R1 of user’s workspace) with one operand, perform the desired operation, and
then store the result found in the FPAC (see examples below). The floating point instructions are only available to the
TMS991 10A when the processor is initialized in standard mode (Section 7.2.4.1). When in prototyping mode, the ex-
ecution of these opcodes will cause a trap to external Macrostore memory space for user defined opcodes. The user
should avoid the use of these opcodes to prevent possible conflicts with future TMS991 10A floating point capability.
When in baseline mode, execution of these opcodes will cause a level 2 illegal opcode interrupt. The following is the
general format of a floating point number:

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15

gn | Exponent 1st Digit 2nd Digit
3rd Digit I 4th Digit 5th Digit 6th Digit

Where:

Sgn - Sign of the number, 0 = Pos, 1 = Neg

Exponent — Exponent {radix 16} of the number +>40 (e.g., for the mantissa to be raised to the 2nd power, expo-
nent would be 2 +>40 = >42)

Digits 1-6 — Mantissa of the number (in hex).

NOTE: The TMS9110A assumes the decimal point place to b prior to the first digit of the mantissa. it also that the number is a floating

poir
number and not zero, the first digit is non-zero. If a flosting zero is to be rep the exp hould also be cl d (set to 00). Otherwis
errors could result.

TABLE B.2 — TMS99110A FLOATING POINT FUNCTIONS

AR Add Real to FPAC
SR Subtract Real - to FPAC
MR Muttiply Real to FPAC
DR Divide Real to FPAC
LR Load Real _ into FPAC
STR Store Real from FPAC
NEGR Negate Real in FPAC
CR Compare Reals general source/dest
CIR Convert Integer to Real general source to FPAC
CER Convert Extended Integer to Real in FPAC
CRI Convert Real to Integer in FPAC
CRE Convert Real to Extended Integer in FPAC
MM Muttiply Multiple (32 bit Integer x 32 bit Integer = >64 bi general
source/destination

To perform a floating point function, the package uses R0 and R1 of the user’s workspace as a floating point accumulator.
All floating point operations {except for MM and CR) use the FPAC. To load the accumulator use the LR instruction or
manually move the desired operand into RO-R1. To store a result, the STR instruction could be used or the number could
be manually moved out (see example below).

EXAMPLE 1—-ALTERNATE METHODS OF A SIMPLE OPERATION

LR *R4 Load FPAC MOV *R4,R0
MOV @2(R4),R0
AR RS Do Add Read AR R5
STR @ANS Store Answer MOV RO,@ANS

MOV R1,@ANS +2

108

EXAMPLE 2—A MORE INVOLVED FLOATING POINT SEQUENCE

Suppose the following equation was to be evaluated and a ‘lowest value calculated’ parameter replaced if the result was

even smaller.

V1*(-V2 - CONSTANT)

V3*{V4 + 2)

Assuming the parameters were already off in memory some place, the following would be a possible solution.

{Note addressing modes)

u RO,2 LOAD INTEGER 2 INTO FRAC {(hi word only)
CIR RO CONVERT IT TO REAL {register direct)
AR *R2 ADD DENOMINATOR TERM V4 (indirect)
MR *R3+ MULTIPLY DENOMINATOR TERM V3 (indirect auto-inc)
STR R8 STORE TEMP RESULT {register direct)

*
LR @CONST GET CONSTANT {symbolic}
CER CONVERT EXTENDED INTEGER TO REAL {FPAC content)
NEGR NEGATE FPAC CONTENTS)
SR @OFFSET(R4) SUBTRACT NUMERATOR TERM V2 {indexed)
MR *R5 MULTIPLY NUMERATOR TERM V1 (indirect)
DR R8 DO THE DIVISION (indirect)
CR RO,@LOW COMPARE VS LOWEST (diract & symbolic)
JGT LooP JUMP IF NOT LOWER (OR EQUAL)
STR @Low STORE NEW LOWEST (symbolic)

LOOP eee eee (gtc.etc.etc.)

B.4.1 Dual-Operand Floating Point Instructions with Multiple Addressing Modes for the Source Operand (99110A only)

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: o o o o | OPCODE [1] 3]

The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES
0o 0,1,...,15 Workspace register
1 01,...,15 Workspace register indirect
2 0 Symbolic
2 12,...,15 Indexed 1
3 1,2,...,15 Workspace register indirect autoincrement 1,2
NOTES: 1. Workspace register 0 may not be used.
2. Theworksp gister is ir dby4.
RESULT STATUS
OPCODE COMPARED BITS
MNEMONIC 466789 MEANING TOO AFFECTED DESCRIPTION
AR 110001 Add Real Yes 04 FPAC + (SA,SA+2) - FPAC
SR 110011 Subtract Real Yes 04 FPAC - (SA,SA+2) - FPAC
MR 110100 Multiply Real Yes 04 (SA,SA +2) * FPAC - FPAC
DR 110101 Divide Real Yes 0-4 FPAC / (SA,SA+2) =-FPAC
LR 110110 Load Real Yes 0-2 (SA,SA+2) - FPAC
STR 110111 Store Real Yes 0-2 FPAC —(SA,SA+2)
CIR* 110010 Convert Int to Real Yes 04 Real Representation of (SA)—»
FPAC

*CIR is actually a single operand function; however, its operand is pointed to by SA, not necessarily the FPAC.

109

B.4.2

Single-Operand Floating Point Instructions

General 0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
Format: [o o o o 1 1 0 ©0 0 o0 o0 o0 o | oeco | 0|
OPCODE RESULT STATUS
1 COMPARED BITS
MNEMONIC 34 MEANING TOO AFFECTED DESCRIPTION
CRI 00 Convert Real to Int Yes 04 Int Representation of FPAC — FPAC|
NEGR 01 Negate Real Yes 0-2 - FPAC = FPAC
CRE 10 Convert Real to Ext Int Yes 04 Ext Int Representation of FPAC —
FPAC
CER 1 Convert Ext Int to Real Yes 04 Real Representation of FPAC —>
FPAC
B.4.3 Dual-Operand Floating Point Instructions with Multiple Addressing Modes for the Source and Destination
Operands
General 0 1 2 3 4 5 7 8 9 10 1 12 13 14 15
Format: 0 0 0 0 0 0 1 1 0 o0 o0 o0 | OPCODE
0 0 0 0] Td | D [1s] S
The addressing mode for the operands is determined by the Tx fields (X being either D or S).
Tx X ADDRESSING MODE NOTES
0 0,1,...,15 Workspace register
1 01,...,15 Workspace register indirect
2 0 Symbolic
2 1,2,...,15 Indexed 1
3 12,...,15 Workspace register indirect autoincrement 1,2
NOTES: 1. Workspace register 0 may not be used.
2. The register is i d by 4 unless X — D and opcode ~>0010 (MM} in which case the worksp gister is i dby8.
OPCODE RESULT STATUS
mn COMPARED BITS
MNEMONIC 2345 MEANING TOO AFFECTED DESCRIPTION
CR 0001 Compare Reals No 04 (SA,SA+2) - (DA,DA +2) Set Sta-
tus
MM 0010 Muitiply Muitiple Yes 0-4 {SA,SA+2) * (DA,DA+2) -
(DA,DA+2,DA+4,DA+6) (Un-
signed, Integer)

110

BA4 Status Bit Summary for Floating Point Instructions
The following table summarizes the conditions that set the status register bits during execution of floating point instruc-
tions.
TABLE B.3 ~ ADDITIONS FOR THE 99110 VERSION
CONDITIONTOSETBITTO1
BIT NAME INSTRUCTION {OTHERWISE SET TO 0)
STO Logicalty AR,SR,MR, If result is not 0
greater than DA,LR,STR,
NEGR,CIR,
CER,CRl,
CRE,CR
MM Cleared unconditionally
ST1 Arithmetic AR,SR,MR f MSB of result = 0,
greater than DR,LR,STR and resultis not 0
NEGR,CIR,
CER,CRI,
CRE
CR If (SA} > (DA)
MM Cleared unconditionally
ST2 Equal/TB AR,SR,MR If result = 0
Indicator DR,LR,STR,
NEGR,CIR,
CER,CRI,
CRE,MM
CR if (SA) = (DA)
ST3 Carry out LR,STR,NEGR Unaffected
AR,SR,MR,DR If exponential overflow occurs
MM,CR Cleared unconditionally
CIR,CER Set unconditionally
CRI,CRE If real source cannot be represented if the format selec-
ted
ST4 Arithmetic LR,STR,NEGR Unaffected
Fault AR,SR,MR,DR If exponential over/underflow occurs
MM,CR, Cleared unconditionally
CIR,CER
CRI,CRE If real source cannot be represented if the format selec-
ted
ST5- All Floating Unaffected
ST15 Point
Instructions

111/112

T1 Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive. Suite 514. Huntsville.
AL 35805, (205) 837-7530.

ARIZONA: Phosaix, PO. Box 36160, 8102 N 23rd Ave.. Suite
B. Phoenix, AZ 85021. (602) 995-1007.

CALIFORNIA: , 831S. Douglas St.. €i Segundo.
CA 90245. (213) -2571: levime, 178 Canwn ht Rd..
livine, CA 92714, {714) 660-1200; Point

West Way Sulte 171 Sacramento. CA 95815, (916) 929- !52!
San Di l’o View Ridge Ave.. Suite B.. San Diego. CA
92123. {114) 27&9600 Santa l:lan 5353 Betsy Ross Or..
Santa CIara CA 95054, (408) 980-9000; Woodiand Hills,
21220 Erwin St.. Woodland Hills. CA 91367. (213) 704-7759.

COLORADO: Denver, 9725 E. Hampden St.. Suite 301. Den-
ver. CO 80231. (303) 695-2800

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd..
Bames;nduslnal Park. Wallingford. CT 06492. (203)

FLORIDA: Clearwater, 2280 U S Hwy. 19 N Suite 232.
Clearwater. FL 33515. (813) 796-1926; Ft. I.amnm 2765
W 62nd St . Ft. Lauderdale. FL 33309 (305) 973-8502;
Maitland, 2601 Maitland Center Parkway. Maitiand. FL 32751.
(305) 645-9600.

GEORGIA: Atlanta, 3300 Northeast Expy.. Building 9. Atianta.
GA 30341. (404) 452-4600

ILLINOIS: Adli Heights, 515W Algonquin. Arlington
Heights. IL . (312) 640-2934

INDIANA: Fi. w:‘yle 2020 Inwood Dr.. Ft. Wayne. IN 46805.
(219) 424-5174. Indianapolis, 2346 S. Lynhurst. Suite J-400
indianapoiis. 1N 46241, (317} 248-8555.

10WA: Cedar Rapids. 373 Collins Rd NE. Surte 200. Cedar
Rapids. 1A 52402. (319) 395-9550

MARYLAND: Baltimere, 1 Rutherford P1.. 7133 Rutherford
Rd.. Baltimore. MD 21207. (301) 944-8600.

= USETTS: Waktham, 504 Totten Pond Rd.. Waltham
MA 02154, (617) 890-7400.

MICHIGAN: Farmi Hillg, 33737 W. 12 Mile Rd.. Farm-
ington Hills. MI 48018. (313) "553-1500.

MINNESOTA: Edina, 7625 Parklawn. Edina. MN 55435. (612)
830-1600.

MISSOURI: 8090 Ward

64114, (816) 523-2500; $1. Louis, 11861
Drive. St. Lowis. MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminat Ave. West. Clark. NJ
07066. (201) 574-9500.

.. Kansas City. MO
tiine Industrial

NEW MEXICO: , 5907 Alice NSE. Suite E. Albu-
querque. NM 87110, (505) 265-8491

NEW YORK: East , 6700 Oid Coliamer Rd. . East
Syracuse NY 13057 (315) 463-9291: Endicolt, 112 Nanticoke
.PO. Box 618. Enmcol(NY 13760, (607) 754-3900:

llolvillt. Huntington Qu: gle Sume 3010 PO. Box
2936, MEWIlle NY 11747 (516)4 -6600;
201 South ie. NY 12601, (314) 473

4)
mg&r 1210 Jeﬂerson d.. Rochester. NY 14623. (716)

NURTH CAROLINA: Charlotte, 8 Woodiawn Green. Woodlam
Rd.. Charlotte. NC 28210. (704) 527-0930: RALEIGH, 3000
Hx%rwoods Bivd.. Suite 118. Raleigh. NC 27625. {919)

OHIO: Beachwood, 23408 Commawe Park Rd..
OH 44122 (216) 464-6100.
Linden Ave . Dayton. OH 45432.

Beachwood.

.. 4124
(sm SIeXa

OKLAHOMA: Tuisa, 3105 E. Skelly Dr.. Suite 110. Tuisa. OK
74105, (918) 743-9547.

SW 105th St.

ORECON: Bsaverion, £700
ton, OR 97005. (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Ft. Wash-
ington, PA 19034, (215 643-6450: Coraopohs PA 15108. 420
Rouser Rd.. 3 Airport Ofice PX. {412) 771-85!

TENNESSEE: Johnson lt{, P.0. Drawer 1255. Erwin Hwy. .
Johnson City, TN 37601, (615) 461-2191.

TEXAS: Austin, 12501 Research Bivd.. P.O. Box 2909, Austin.
TX78723 512) 250-7655; Dallas, PO. Box 1087, Richard-
Houston, 9100 Southwest Frwy Suite 237,
Houston TX 77036, (713) 778-6532: San Antoaio, 1000
Central Park South, San Antonio, TX 78232. (512) 496-1779.

UTAH: SaHt Lake City, 3672 West 2100 South, Salt Lake City
UT 84120. (801) 973-6310

VIRGINIA: Fairfax, 3001 Prosperity. Fairfax, VA 22031, (703)
849- 1400 llillmhhn, 13711 Sutter’s Mill Circle. Midlothian.
VA 23113, (804) 744-1007

WISCONSIN: Brooktield, 205 Bishops Way. Suite 214. Brook-
field. WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave.. N.E. Bldg 6.
Redmond. WA 98052. (206) 831-3080.

Suite 110, Beaver-

CANADA: Ottawa, 436 McClaren St.. Ottawa, Canad

K2POMS, (613) 233-1177: Richmond Hil, 280 Centre St E.
Richmond Hill L4C1B1. Ontario. Canada. (416) 884-9181: St.
Laorent, Ville St. Laurent Quebec. 3460 Trans Canada Hwy..
St. Laurent. Quebec. Canada H451R7. (514) 334-3635. P

T1 Distributors

ALABAMA: Hall-Mark (205) 837-8700

ARIZONA: Phoenix, Kierulti (602) 243-4101: Marshall (602)
968-6181; R V. Weatherlord (602) 272-7144: Wyle (602)
249-2233: Tucsom. Kierulff (602) 624-9986

FORNIA: Los Angeles/0 acaum¥ Arrow 213
701 7500. (714) 85% iy

998 2200: Kierulft (213 725 0235 (714) 731 57‘I1R Marshall

{213) 999-5001. (213) 0141 714) 556-6400:
Weathedord (714)634 {21)349 3451 (714) 623 1261:
641-1611; San Tow (714)

gyle (213} 322 8100 (714 e7gn
714) 278-2112: Marshall (714) 578%00

RV Weatherlord (714) 695-1700: Wg’ 714) 565-9171: San
Francisco Bay Area. Arrow (408) 74 Kuerum (415)
968-6292: Marshall (400) 732 noo Time (408) 734-9888:
United Comonents (408) 496-6900: Wyle 1408) 727 2500:
Santa Barbara, R V. Weathertord (805)465-8551

COLORADO: Arrow (303) 758-2100: Kierulff (303) 371-6500:
RV Weatherford (303) 428-6900; Wyle (303) 457-9953

CONNECTICUT: Arrow (203) 265-7741: Diplomat (203)
797-9674; Kierulff (203) 265-1115: Marshall (203) 265-3822:
Milgray (203) 795-0714.

FLORIDA: Ft. Lauderdale, Arrow (305) 973-8502; Dxpaomat
(305) 971- 7160; Hall-Mark (305) 974-9280: Kierutit {305)
652- Arrow (305) 725-1480: D:plomax (305)
725~ 4520 Hall Mark (305) 855-4020; Mng '2'
647-5747. Tampa, Diplomat (812) 443-4514: Kieru
(813)576-1966.

GEORGIA: Arrow (404) 449-8252 Hall-Mark (404) 447-8000:
Kierulff (404) 447-5252: Marshall (404) 923-5750.
ILLINOIS: Arrow (312) 397-3440: Diplomat (312) 535-1000:

Hall-Mark (312) 860-3800: Kierulff (312) 640-0200; Newark
{312) 638-4411.

INDIANA: mmapolls. Arrow (317) 243- 9353 Graham (317)
634-8202: Ft. Wayne, Graham (219) 423-34

nent Speciaities (913

KANSAS: Kansas
492-3555: Hall Mam {913] -4747. Wichita, LCOMP (316)
265-9507

MARYLAND: Arrow (301) 247-5200: Diplomat (301) 995-1226:
Hall-Mark (301) 796-9300: Kierulff (301) 247-5020: Milgray
{301) 468-6400
MASSACHUSETTS: Arrow (617) 933-8130: Diplomat (617)
429-4120: Kierulff (617) 667-8331: Marshall (617) 272-8200:
Time (617} 935-8080
MICHIGAN: Detroit, Arrow {313) 971-8200. Newark (313} 967-
0600: Grand Rapids. Newark (616) 243-0912
MINNESOTA: Arrow (612) 830-1800: Diplomat (612) 788-8601:
Hall-Mark (612) 854-3223: Kieruiff (612) 341-7500.

MISSOURL: Karsas City, LCOMP (816) 221-2400: St. Losis,
Asrow (314) 567-6888: Hall-Mark (314) 291-5350; Kierultf
(314) 739-0855

REW HAMPSHIRE: Arrow (603) 668-6368.

NEW JERSEY: Arrow (201) 575-5300: Diplomat (201)
785-1830; JACO (201) 778-4722: Kierulff (201) 575-6750:
Marshall (201) 340-1900.

NEW MEXICO: Arrow (505) 243-4566: International
Electronics (505) 345-8127.

NEW YORK: Long Island, Arrow (516} 231-1000; Dipiomat
(516) 454-6400: JACO (516) 273-5500: Marshall (516
273-2424; Milgray (516) 546-) £45-3986;
Rochester, Arrow (716) 275-0300: Marshall (716) 235-7620:

Rochester Radio Supply (716) 454-7800: , Arrow
(315) 652 1000; Diplomat (315) 652-5000: Marshali {607)

IIO CARM Arrow (919) 876-3132. (919) 725-8711:
Hall-Mark {918) 872-0712: Kierulff (919) 852-6261.

10: Cincinmati, Graham (513) 772-1661; Cleveland, Ar
g28|6) 246-3990: Hail- Mark (215) 473 2007: Kiefum (216)

ST 455585 £5CD (516 2o
Arrow (513) 435-5563: ESCO 1513) 2 -1133 Marshail (513)
236-8088

nent Specialties (918; 664-2820: Hall-
Mark (918) 665 3 : Kierulff (918) 252

OREGON: Kierutff (503) 641-9150: Wyle (503) 640-6000.

PENNSYLVANIA: Arrow (412) 856-7000: Arrow (609)
235-1900: General Radio 3%09% -8560: Hall-Mark {609)
424-0880: Milgray (609) 010.

TEXAS: Austin, Arrow (512) 835-4180; Componem Specialties
&,‘12) 337-8922 Hall-Mark (512) 258-8848; Kierulff (512

ow (214) 386-7500; Component
Specialties (214) 357- 5511 Hall-Mark (214) 341-1147:
International Electronics (214) 233-9323: Kierulff (214
343-2400: E Pm International Electronics (915) 778-9761;
Houston, Arrow (713) 491-4100; Component Specialties (713)
771-7237; Hall-Mark (7132 781-6100: Harnson Equipment
(713) 879-2600: Kierulff (713) 530-70

UTAH: Diplomat (801) 486-4134: Klelulﬂ (801) 973-6913; Wyle
{801) 974-9953

VIRGINIA: Arrow (04) 282-0413.

WASHINGTON: Arrow (206) 643-4800: Kierulff (206)
igg% United Components (206) 643-7444; Wyle (206)

WISCONSIN: Arcow (414) 764-6600: Hali-Mark (414)
761-3000; Kierulff (414) 784-8160.

CANADA: Caigary, Futureg 3) 259-6408; Varah (403}
230-1235; Dowssview, CESCO (416) 661-0220; Hamilton,
Varah {416) 561-3311; Montrea!, CESCO %514) 735-5511:
70 onm CESCO 6-6905:
Ciiy. CE! Fﬂs) 687-4231:
m. Future (416) 663-5563; Vancouver, utureg)
Varah (604) 873-3211: Winnipeg, Varah (204)

i
TEXxas
INSTRUMENTS

TI1 Worldwide Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive. Suite 514. Huntsville
AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160. 8102 N 23rd Ave . Suite
B. Phoenix. AZ 85021. (602) 995-1007

CALIFORNIA. EI , 831 S. Doua%as St.. Bl Se%undo
CA 90245, (213) 973-2571; rvine, 1

Irvine, CA 92714, ;714 660-1200: mento, 1900 Point
Weleay Suite 171 ramento, CA 95815, (916) 928- 1521
, 4333 View Ridge Ave.. Suite B.. San Diego. CA
14) 278-9500; Santa Clara, 5353 Betsy Ross Dr
Santa Ciara. CA 95054, (408) 980-9000; Woodiand Hills.
21220 Erwin St.. Woodland Hills. CA 91367. (213) 704- 7759

COLORADO: Deaver, 9725 E. Hampden St . Suite 301. Den-
ver, O 80231, (303) 695-2600

CONNECTICUT: Wa m‘ 9 Barnes Industrial Park Rd
games ;nduslnal Park, Wallingford. CT 06492. (203}

RIDA: Clearwater, 2260 U.S Hwy. 19 N.. Suite 232
Clearwater, FL 33515, (813) 796-192 I.nlnlm. 2765
N.W. 62nd St.. Ft. Lauderdale. A 73-8502:
(.3:5')“ 2601 Ma»lland Center Parkway. amand FL 32751

GEORGIA: Atianta, 3300 Northeast Expy . Buiding 9 Atianta
GA 30341, (404) 452-4600

Heights, 515 W Algonquin Arlington
Haohls IL 5. (312) 640-2934
(219) 424

INDIANA: Pl , 2020 Inwood Dr . Ft Wayne. IN 46805
) 424-517 . 2346 S. Lynhurst. Suite J-400
lnmanaoohs IN 46241, {317) 248-8555

, 373 Collins Rd. NE. Suite 200. Cedar

A: Codar
Raplds. 1A 52402. (319) 385-9550

MARYLAND: Baltimore, 1 Rutherford Pi . 7133 Ruthertord
Rd . Baitimore. MD 21207. {301) 944-8600

MASSACHUSETTS: Waitham, 504 Totten Pond Rd Waltham
MA 02154. (617) 890-7400

MICHIGAN: Farmi Hills, 33737 W 12 Mile Rd Farm-
ington Hills. Mi 48018. (313) 553-1500

MINNESOTA: Edina. 7625 Parklawn Edina MN 55435 1612
830-1600

MISSOURL: Kai N 8080 Ward Pkwy . Kansas City. MO
64114. (816) 5232 . $t. Louis, 11861 Westhine Industriat
Drive. St Louis. MO 63141, (314) 569-7600

NEW JERSEY: Clark, 292 Terminal Ave West Clark Nu
07066. (201) 574-9800

NEW MEXICO: Albuquerque, 5907 Alice NSE Suite E Albu
querque. NM 87110. (505) 265-8491

NEW YORK: East , 6700 Oid Collamer Rd . East
Syracuse. NY 1305 (315)463 9291; Endicotl, 112 Nanticoke
Ave.. P.O. Box 618. Endicott, NY 13760, (607) 754-3900.
Melville, 1 Huntington Ouadrangle Suite 3C10. P0. Box
2936. Melville. NY 11747 (516) 454-6600: hkeepsie.
201 South Ave . Poughkeepsie. NY 12601. (914) 473-
mw 1210 Jefferson Rd . Rochester. NY 14623. (716)

NORTH CAROLINA: Charlotte, 8 Woodiawn Green. Woodlawn
Rd . Charlotte. NC 28210. (704) 527-0930: RALEIGH, 3000
Hu%_woods Bivd . Suite 118, Raleigh. NC 27625 (919)

OHIO: Beachwood, 23408 Commerce Park Rd . Beachwood
OH 44122, (216) 464-6100. , Kingsley Bidg 4124
Linden Ave Dayton. OH 4543; (513) 258-3877

OKLAHOMA: Tuisa, 3105 € Skelly Dr Suite 110 Tuisa 0K
74105. (918) 749-9547

OREGON: Beaverton, 6700 SW 105th St
ton. OR 97005. (503) 643-6758

PEI“ISVLVANIA Ft. Washington, 575 Virginia Or . Ft. Wash-
ington. PA 19034, (215) 643-6450; Coraopolis. PA 15108 420
ice PK. (412) 771-8550

TENNESSEE: Johnson Ct{ PO Drawer 1255. Erwin Hwy
Johnson City. TN 37601. (615) 461-2191

TEXAS: Austin, 12501 Research Bivd . PO. Box 2909, Austin
TX 78723. (512) 250- 7655 Dalln P.0. Box 1087, Richard-
son. TX 75080; Houstom, 9100 Southwest Frwy.. Suite 237
Houston. TX 77036. (713) 778-6592: San Antosio, 1000
Central Park South. San Antonio. TX 78232. (512) 496-1779

UTAH: Sait Lake City, 3672 West 2100 South. Salt Lake City
UT 84120 (801) 873-6310

VIRGINIA: Fairtax, 3001 Prospenty. Fairfax. VA 22031. (703}
849-1400: Midlothian, 13711 Sutter's Mill Circle. Midlothian.
VA 23113. (804) 744- 1007

WISCONSIN: Brooktield, 205 Bishops Way. Suite 214. Brook-
fietd. WI 53005. (414) 784-3040

WASHINGTON: Redmond. 2723 152nd Ave . N.E Bldg 6.
Redmond. WA 98052. (206) 881-3080

CANADA: Ottawa, 436 McClaren St . Ottawa. Canada.
K2POMB_ (613) 233-1177; Richmond Hill, 260 Centre St. E
Richmond Hill L4C1B1. Ontario. Canada. (416) 884-9181: St.
Laurent, Vilie St. Laurent Quebec, 9460 Trans Canada Hwy

St Laurent. Quebec. Canada H4STR7. (514) 334-3635 P

Suite 110. Beaver-

Rouser Rd . 3 Airport

ARGENTINA, Texas instruments Argentina SA 1 C F
Esngga 130. 15th Fioor. 1035 Buenos Aires Argentina

4-

AUSTRALIA (& NEW ZEALAIDI Texas Instruments Australia
Ltd.: Unit 1A, 9 Byfield St . e (Sydney). New South
Wales. Australia 2113. 02 887 112 SIh loor. 418 St Kiida
Road. Melbourne. Victoria. Australia 3004. 03 - 267-4677

AUSTRIA, Texas Instruments Ges.m b H - Industriestrabe
B 16. A-2345 Brunn Gebirge. 2236-846210

lﬂ.ﬂlﬂ Texas Instruments N V Belgium S A Mercure
er Ralmsuaal 100 Rue de ia Fusee. 1130 Brusse!s
um.

mm Texas Instruments Electronicos do Brasil Lida Av
Lima. 2003. 20 0 Andar — Pinheiros. Cep-01451 Sao
Paulo Brazil. 815-6166

DENMARK, Texas Instruments A S. Marielundve; 46€
DK-2730 Herlev. Denmark. 2 - 9174 00

FINLAND. Texas Instruments finland OY PL 56. 00510
Hetsinki 51. Finland. (90) 7013133

FRANCE, Texas Instruments France: Headquarters and Prod.
Plant, BP 05, 06270 Villeneuve-Loubet. (93) 20-01-01: Pans
Office. BP 67 8-10 Avenue Morane-Saulnier. 78141 Velizy-
Villacoublay. (3) 946-87-12; Lyon Sales Office. L Oree
D'Ecully. Batiment B. Chemin'de la Forestiere. 69130 Ecully.
(7) 833-04-40: Strasbourg Sales Office. Le Sebastopol 3. Quai
Kieber. 67055 Strasbourg Cedex. (88) 22-12-66: Rennes.
23-25 Rue du Puits Mauger. 35100 Rennes. (99) 79-54-81
Toulouse Sales Office. Le Peripole — 2. n du Pigeonnier
de la . 31100 Toulouse. (61) 44-18-19: Marseille Saies
Office. Noilly Paradis — 146. Rue Parads. 13006 Marseile
(91) 37-25-30

GERMANY, Texas Instruments Deutschiand GmbH Haggerty-
strasse 1. D-8050 Freising. 08161-801: Kurfuerstendamm

195 196. D-1000 Berlin 15. 030-8827365. I1I. Hagen 43 Kib
beistrasse. D-4300 Essen. 0201-24250: Frankfurter Aliee 6-8
D-6236 Eschborn 1. 06196-43074. Hamburger Strasse 11
D-2000 Hamburg 76. 040-2201154. Kirchhorsterstrasse 2
D-3000 Hannover 51. 0511-648021. Arabellastrasse 15
D-8000 Muenchen 81. 089-92341. Maybachstrasse 11 D-7302
Osthiidern 2 Nefiingen. 0711-34030

HONG KONG (+ PEOPLES REPUBLIC OF CHINA), Texas
Instruments Asia Ltd - Bth Fioor. World Smgpm; Ctr Harbum
City. 7 Canton Rd . Kowloon. Hong Kong

IRELAND. Texas Instruments (Ireland) Limited 25 St
Stephens Green. Dublin 2. Ewre. 01 609222

ITALY, Texas Instruments Semiconduttori italia Spa Viale
Delle Scienze. 1. 02015 Cittaducale (Rieti). Haly. 0746 694 1
Via Salaria KM 24 (Palazzo Cosma). Monterotondo Scalo
{Rome) ltaly 06 395; Viale Europa. 38-44 20093

Monzese (Milano). 02 2532541: Corso Svizzera. 185
101 Torinp. ltaly. 011 774545: Via J. Barozzi. 6. 45100
Bologna. Italy. 1355851; Via Nazareth. 7. 35100 Padova
Italy. 049 850386

JAPAN, Texas Instruments Asia Ltd.: 4F Aoyama Fu)i Big
4-12, Kita Aoyama 3-Chome. Minato-ku, Tol%n Japan 1 7.
03-498-2111; Osaka Branch. SF N«ssho Iwai Idu 30 im-
abashi 3-Chome. vaasm -ku. Osaka, Japan 541. 06-204-1881-
goya Branch. 7F Daini Toyota West Bidg.. 10-27. Meieki
home. Nakamura-ku. Nagoya. Japan 450. 052-583-8691

KOREA, Texas Instruments Supply Co.: Room 201. Kwang-
24-1, Hwayand-Dong. Sungdong-ku. 133 Seoul
rea. 02 + 464-6274 5.

MEXICQ, Texas Instruments de Mexico S.A - Poniente 116.
No. 489. Colonia Vallejo. Mexico. D.F. 02300. 567-9200.

MIDOLE EAST, Texas Instruments: No. 13. 1st Floor Mannat
Bidg.. Diplomatic Area. Manama. P0O. Box 26335. Bahram.
Arabian Gulf. 973 - 27 46 81

NETHERLANDS. Texas Instruments Holland 8 V.. Sermconduc-
tor Division- Laan Van de Helende Meesters 421A. 1186 AL
Amstelveen. Nederland. (020) 473391

NORWAY, Texas Instruments Norway A S Kr Augustsgt 13.
Oslo 1. Norway. (2) 20 60 40

PHILIPPINES. Texas Instruments Asia Ltd.. 14th Floor. Ba-
Lepanto Bidg.. B747 Paseo de Roxas. Makati. Metro Manila.
Philippines. 882465

£
(Ponu I) Lda Rua Eng Fredenco Ulrich. 2650 Moreira Da
Maia. 4470 Maia. Portugal. 2-9481003.

SCOTLAND, Texas Instruments Limited: 126-128 George
Street. Edinburgh. Scotiand, EH1 2AN. 031 226 2691

SINGAPORE (+ INDIA, IRDONESIA, MALAYSIA,
Texas Instruments Asia Ltd : P 0. Box 138. Umit #02-08.
Block 6. Kolam Ayer Industrial Est.. Lorong Bakar Batu.
Singapore 1344, Republic of Smgapore 747-2255

SPAIN, Texas Instruments Espana. S.A - C Jose Lazaro Gal-
diano No. 6. Madrid 16. 1 458 14.58

SWEDEN, Texas instruments International Trade Corparation
58\:5» lialen): Box 39103. 10054 Stockholm. Sweden. 08 -

TAIWAN, Texas Instruments Supply Co - 10th Floor, Fu-Shing
glzdo & 711 Sung Kiang Road. Taipei. Taiwan. Republic of China.
+

UNITED KINGDOM, Texas Instruments Limited: Manton Lane.
Bedford. MK41 7PA, England, 0234 67466; 186 High Street,
Slough. SL1 1LD, England, 0753 35545: St. James House.
xeilsa gton Road North. Stockport. SK4 2RT. England. 061 A

Printed in U.S.A.

TEXAs
INSTRUMENTS

- TeExas
INSTRUMENTS

Post Office Box 1443 Houston. Texas 77001 C
. Semiconductor Group Printed in U.S.A.

November 1982
MP009

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	xBack

